Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3152-3158    https://doi.org/10.11896/cldb.19060170
  金属与金属基复合材料 |
Zn-Cu-Ti合金的力学性能及腐蚀性能研究进展
孙丽丽1,2, 陈良源1,2, 王勇1,2, 张旭昀1,2, 徐德奎3
1 东北石油大学机械科学与工程学院,大庆 163318;
2 黑龙江省石油石化多相介质处理及污染防治重点实验室,大庆 163318;
3 大庆油田有限责任公司采油工程研究院,大庆 163453
Research Progress on Mechanical and Corrosion Properties of Zn-Cu-Ti Alloys
SUN Lili1,2, CHEN Liangyuan1,2, WANG Yong1,2, ZHANG Xuyun1,2, XU Dekui3
1 School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China;
2 Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing 163318, China;
3 Oil Production Engineering Research Institute of Daqing Oilfield Company Limited, Daqing 163453, China
下载:  全 文 ( PDF ) ( 3836KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Zn-Cu-Ti合金是一种应用前景十分广阔的锌基合金。将Cu、Ti元素加入锌基体中,不但能使材料硬化,而且可有效提高材料的抗蠕变性能,其良好的综合力学性能可与铜合金相当,且密度更低。Zn-Cu-Ti合金继承了金属锌极佳的耐蚀性,用其板材替代传统的镀锌板,在大气环境中作为屋顶覆盖材料可使使用年限延长几十倍。
我国的锌矿资源储量和产量均居世界前列,但Zn-Cu-Ti合金在锌的应用中占比极低。首先,目前Zn-Cu-Ti合金的应用领域较单一,作为建筑墙板和屋顶用材,国内加工成卷板的处理工艺存在较多不足,高质量的卷板还需要进口。其次,Zn-Cu-Ti合金在自然大气环境中具有极佳的耐蚀性,但在特殊腐蚀环境下的腐蚀机理研究极不清晰。最后,Zn-Cu-Ti合金在高温和低温环境中的力学性能仍较差,对其力学性能的研究还没有统一的结论。这些均限制了该合金在其他领域的应用。
近年来,国内外学者积极探索锌合金改性技术,新开发的锌合金压铸件形状精密且复杂,常用来制作轴承、模具、耐磨和减震部件等。研究已证实,选择合理的工艺将可大幅提升Zn-Cu-Ti合金的力学性能和耐蚀性能,如机械加工及热处理可以改变化合物相的尺寸、分布和金属离子的固溶度等。适当增加Cu含量可提高合金的硬度及抗拉强度;Ti对锌合金韧性有一定的改善作用;加入Gr、Mg和稀土等元素会改变合金相组成、晶粒尺寸以及腐蚀层结构等,进而改善合金的力学性能及腐蚀性能。在实验中,实验设计包括改变合金成分比例,添加微量金属元素,改进制备、加工和热处理工艺等。力学性能测试主要包括硬度、抗拉强度、塑性和韧性等。腐蚀性能测试包括合金自腐蚀速率、电化学腐蚀和应力腐蚀开裂等。分析方法除微观结构、相组成测试外,还包括利用腐蚀层致密度分析合金耐蚀性能及建立数学模型等。从长期来看,Zn-Cu-Ti合金在锌的消费结构中的比例将会逐渐增长。在应用中,Zn-Cu-Ti合金也将成为电器用材、五金用材、汽车部件和涂层材料等的优质替代材料。
本文结合Zn-Cu-Ti合金的特点,阐述国内外Zn-Cu-Ti合金在力学性能和耐腐蚀性能上的研究进展,总结Zn-Cu-Ti合金制备工艺、成型工艺以及腐蚀方面的基础理论研究成果。同时,结合Zn-Cu-Ti合金的应用前景,展望Zn-Cu-Ti合金更广泛的应用,以期为Zn-Cu-Ti合金的开发和应用提供必要的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙丽丽
陈良源
王勇
张旭昀
徐德奎
关键词:  Zn-Cu-Ti合金  力学性能  腐蚀性能    
Abstract: Zn-Cu-Ti alloys are zinc-based alloys with a very broad application prospect. The addition of Cu and Ti elements to the zinc matrix can effectively improve the hardness and creep resistance of the materials. The good comprehensive mechanical properties of the Zn-Cu-Ti alloys are comparable to those of copper alloys, but also exhibit lower density. The Zn-Cu-Ti alloys can inherit the excellent corrosion resistance of zinc, and already have replaced the traditional galvanized sheets. The roof covering materials of Zn-Cu-Ti alloys can be extended by several times in the atmospheric environment.
China's zinc reserves and production are both in the top positions in the world. However, Zn-Cu-Ti alloys have a very low proportion in the application of zinc. Firstly, most of Zn-Cu-Ti alloys are processed into coiled sheets for building wall panels and roofing materials, the application fields are limited. There are many deficiencies in the processing of domestic Zn-Cu-Ti alloys, however, the high-quality coils always need to be imported. Secondly, Zn-Cu-Ti alloys have excellent corrosion resistance in natural atmospheric environment, but the study of corrosion mechanism in special corrosion environment is unclear. In addition, the mechanical properties of Zn-Cu-Ti alloys are poor in high temperature and low temperature environments, and the research on the mechanical properties of Zn-Cu-Ti alloys has not yet reached a unified conclusion. These limit the application of the Zn-Cu-Ti alloys in other fields.
In recent years, the modification technology of zinc alloys has actively been explored. The newly developed die-casting parts of zinc alloys are precise and complex in shape, which used to make bearings, molds, wear-resistant and shock-absorbing parts. Now it has been confirmed that the machining and heat treatments process will change the size and distribution of the compound phase, the solid solubility of metal ions in Zn-Cu-Ti alloys. When selecting the reasonable process parameters, the mechanical and corrosion resistance of the alloys will be improved to a certain extent. The increasing the content of Cu can increase the hardness and tensile strength of the alloys. Ti can improve the toughness of the zinc alloys. The addition of Cr, Mg and rare earth elements will change the phase composition and grain size of the alloys. The corrosion layer structure and the mechanical property of the alloys can be improved under certain conditions. During the period of the experiments, the experimental designs include changing the proportion of alloys composition, adding other metal elements, improving the preparation process, and heat treatments process. The corrosion testing mainly include the self-corrosion, electrochemical corrosion and stress corrosion cracking tests of the alloys under different environments. In addition to the measurements of microstructure and phase composition, the analytical methods also include the analysis of corrosion resistance of alloys by the density of corrosion layer and the establishment of mathematical model. Zn-Cu-Ti alloys will also become high-quality alternative materials for electrical materials, hardware materials, automotive parts and coating materials. In future, the proportion of Zn-Cu-Ti alloys in the consumption structure of zinc will gradually increase.
Based on the characteristics of Zn-Cu-Ti alloys, this paper describes the research progress of mechanical properties and corrosion resistance of Zn-Cu-Ti alloys at home and abroad, and also summarizes the basic theoretical research results of the preparation process, molding process and corrosion of Zn-Cu-Ti alloys. Combined with the application prospect of Zn-Cu-Ti alloys, the application value of Zn-Cu-Ti alloys is expected to be more widely. The research in this paper provides a necessary reference for the development and application of Zn-Cu-Ti alloys.
Key words:  Zn-Cu-Ti alloys    mechanical property    corrosion performance
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  TG174  
基金资助: 黑龙江省自然科学基金(LH2019E021); 国家自然科学基金(51974091)
作者简介:  孙丽丽,博士,副教授。2005年6月毕业于东北石油大学金属材料工程专业,获得工学学士学位。2015年7月在东北石油大学石油与天然气工程专业取得博士学位, 2015—2016年英国曼彻斯特城市大学访问学者。目前主要从事多相流数值模拟及材料损伤机理研究。近年来,发表学术论文20多篇,其中SCI和EI检索6篇。
王勇,教授、博士研究生导师,黑龙江省级领军人才梯队后备带头人。2003年7月毕业于东北石油大学,获得工学学士学位。2012年7月在中国科学院金属研究所腐蚀科学与防护专业取得博士学位,2013—2015年在同济大学进行博士后研究工作。2015—2016年英国曼彻斯特大学腐蚀防护中心访问学者。主要从事材料腐蚀与防护的研究工作。近5年,主持国家自然科学基金2项、黑龙江省自然科学基金2项、中国博士后基金1项、黑龙江省博士后科研启动金1项等省部级以上项目10多项。发表学术论文50多篇,其中SCI和EI检索24篇,SCI一区期刊7篇。
引用本文:    
孙丽丽, 陈良源, 王勇, 张旭昀, 徐德奎. Zn-Cu-Ti合金的力学性能及腐蚀性能研究进展[J]. 材料导报, 2021, 35(3): 3152-3158.
SUN Lili, CHEN Liangyuan, WANG Yong, ZHANG Xuyun, XU Dekui. Research Progress on Mechanical and Corrosion Properties of Zn-Cu-Ti Alloys. Materials Reports, 2021, 35(3): 3152-3158.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060170  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3152
1 Hu Y X.Hunan Metallurgy,1984(5),29(in Chinese).胡贻信. 湖南冶金,1984(5),29.2 Yang F, Liang Y C, Kuang Y J, et al.Corrosion and Protection,2017,38(10),767(in Chinese).杨帆,梁永纯,匡尹杰,等.腐蚀与防护,2017,38(10),767.3 Ding X M, Zhou S H, Ye B, et al.Materials Reports A:Review Papers,2017,31(2),38(in Chinese).丁学明,周素洪,叶兵,等.材料导报:综述篇,2017,31(2),38.4 Osuch P, Walkowicz M, Knych T, et al.Key Engineering Materials. Trans Tech Publications,2016,682,380.5 Sun W, Yang S, Yu X, et al.E.U. patent application, EP20140833491.2018.6 王建华,吉宏祥,邵伯金,等.中国专利,CN107604280A,2018.7 Wei H G, Li W W.Shanghai Nonferrous Metals,2015,36(1),1(in Chinese).魏华光,李伟文.上海有色金属,2015,36(1),1.8 梁振西,康壮苏,李紫跃,等.中国专利,CN106319424A,2017.9 Wang L N, Meng Y, Liu L J, et al.Journal of Metals,2017,53(10),1317(in Chinese).王鲁宁,孟瑶,刘丽君,等.金属学报,2017,53(10),1317.10 Tang Y P, Hong L, Jin Y C, et al.Materials Protection,2014,47(5),43(in Chinese).唐谊平,洪良,金源超,等.材料保护,2014,47(5),43.11 Chen D J, Pan M, Lin Q, et al.New Technology & New Process,2018(2),14(in Chinese).陈端杰,潘觅,林巧,等.新技术新工艺,2018(2),14.12 Zhang X M, Xiao L R, Wen Y N, et al.Journal of Materials Science and Engineering,2010,28(4),576(in Chinese).张喜民,肖来荣,温燕宁,等.材料科学与工程学报,2010,28(4),576.13 Chen X, Yang D, Tian M J, et al.Special Casting & Nonferrous Alloys,2015,35(6),669(in Chinese).陈行,杨灯,田明杰,等.特种铸造及有色合金,2015,35(6),669.14 Boczkal G, Mikułowski B.Archives of Metallurgy and Materials,2015,60,2355.15 Villegas-Cardenas J D, Saucedo-Muñoz M L, Lopez-Hirata V M, et al.Materials Research,2014,17,1137.16 Savaşkan T, Hekimoğlu A P, Pürçek G, et al.Tribology International,2004,37,45.17 Elzanaty H.International Journal of Research in Engineering & Technology,2014,2,55.18 Deng M, Jia S G, Song K X, et al.Transactions of Materials and Heat Treatment,2014,35(8),31(in Chinese).邓猛,贾淑果,宋克兴,等.材料热处理学报,2014,35(8),31.19 Huang Y, Xu H.Material Sciences,2016,6,65.20 Li X Y, Lu Y L, Wang J, et al.Journal of Materials Engineering,2018,46(1),67(in Chinese).李晓燕,卢雅琳,王健,等.材料工程,2018,46(1),67.21 Perez-Bustamante R, Perez-Bustamante F, Carreno-Gallardo C, et al.Microscopy and Microanalysis,2018,24,2270.22 Pourbahari B, Mirzadeh H, Emamy M, et al.Journal of Materials Engineering and Performance,2018,27,1327.23 Huang Y, Gan W, Kainer K U, et al.Journal of Magnesium and Alloys,2014,2,1.24 Ji S Y, Liang S H, Song K X, et al.The Chinese Journal of Nonferrous Metals,2016,26(8),1649(in Chinese).冀盛亚,梁淑华,宋克兴,等.中国有色金属学报,2016,26(8),1649.25 Wu C, Sun Y, Fan S, et al.Journal of Phase Equilibria and Diffusion,2018,39,130.26 Wu M W, Tsao L C, Shu G J, et al.Materials Science and Engineering: A,2012,538,135.27 Sha J, Yang C, Liu J, et al.Scripta Materialia,2010,62,859.28 Xiao Y F, Zhou N F, Wu L, et al.Heat Treatment of Metals,2017,42(4),22(in Chinese).肖逸锋,周年丰,吴靓,等.金属热处理,2017,42(4),22.29 Zarpelon L M C, Banczek E P, Martinez L G, et al.Advances in Mate-rials Science and Engineering,2018,11,1.30 He L J, Wang J Z, Wang C B, et al.Hot Working Technology,2009,38(19),1(in Chinese).何力佳,王建中,王春波,等.热加工工艺,2009,38(19),1.31 Gomes L F, Silva B L, Garcia A, et al.Metallurgical and Materials Transactions A,2017,48(4),1841.32 Geng Z J, Xiao L R, Cai Z Y, et al.Mining and Metallurgical Enginee-ring,2012,32(5),101(in Chinese).耿占吉,肖来荣,蔡圳阳,等.矿冶工程,2012,32(5),101.33 Wang Y, Xiao L R, Wan L, et al.Special Casting and Nonferrous Alloys,2012,32(11),1054(in Chinese).王艳,肖来荣,万磊,等.特种铸造及有色合金,2012,32(11),1054.34 Yuan D, Gao H B, Sun X J, et al.Aeronautical Manufacturing Technology,2018,61(10),40(in Chinese).袁丁,高华兵,孙小婧,等.航空制造技术,2018,61(10),40.35 Yu Y, Tang S, Guo X B, et al.Iron & Steel,2006,41(11),50(in Chinese).于洋,唐帅,郭晓波,等.钢铁,2006,41(11),50.36 Liu Z Q, He M, Zhao J, et al.China Mechanical Engineering,2015,26(3),403(in Chinese).刘战强,贺蒙,赵建,等.中国机械工程,2015,26(3),403.37 Ji S, Liang S, Song K, et al.Journal of Materials Research,2017,32,3146.38 Xu X Q, Li D F, Guo S L, et al.Transactions of Nonferrous Metals Society of China,2012,22,1075.39 Xu X Q, Li D F, Guo S L, et al.Advanced Materials Research. Trans Tech Publications,2011,291,635.40 Xu X Q, Li D F, Guo S L, et al.Transactions of Nonferrous Metals Society of China,2012,22(1),1606.41 Ma X Y, Li Z H, Li J, et al.Metallurgical Information Review,2011(6),41(in Chinese).马晓艺,李灼华,李戬,等.冶金信息导刊,2011(6),41.42 Tan Y, Lin X F, Zhang S D, et al.Nonferrous Metals Science and Engineering,2015,6(6),57(in Chinese).谭颖,林向飞,张世道,等.有色金属科学与工程,2015,6(6),57.43 Quintana M J, García J O, González R, et al.Dyna,2016,83,77.44 Xiao L R, Zhang X M, Wang Y, et al.The Chinese Journal of Nonferrous Metals,2011,21(11),2775(in Chinese).肖来荣,张喜民,王艳,等.中国有色金属学报,2011,21(11),2775.45 Osuch P, Walkowicz M, Mamala A, et al.Rudy i Metale Nieżelazne Recykling,2015,60,508.46 Liu Y W, Wang Z Y, Cao G W, et al.The Chinese Journal of Nonferrous Metals,2015,25(2),375(in Chinese).刘雨薇,王振尧,曹公望,等.中国有色金属学报,2015,25(2),375.47 Ni Y, Wu G G, Yan Y F, et al.Surface Technology,2018,47(2),182(in Chinese).倪雅,吴国光,闫远方,等.表面技术,2018,47(2),182.48 Cole I S, Muster T H, Lau D, et al.Journal of the Electrochemical Society,2010,157,213.49 Venkatraman M S, Cole I S, Emmanuel B, et al.Electrochimica Acta,2011,56,8192.50 Thomas S, Cole I S, Gonzalez-Garcia Y, et al.Journal of Applied Electrochemistry,2014,44,747.51 Bos C B, Schnitger H C, Zhang X, et al.Corrosion Science,2006,48,483.52 Wang Y H, Xiao L R, Zhao X J, et al.Materials and Corrosion,2016,67,297.53 Ji S, Liang S, Song K, et al.Materials Science,2016,31,408.54 Arenas M A, de Damborenea J.Surface and Coatings Technology,2005,200,2085.55 Cole I S.Materials,2017,10,1288.56 Thomas S, Birbilis N, Venkatraman M, et al.Corrosion,2012,68,1.57 Macdonald D D, Ismail K M, Sikora E, et al.Journal of the Electroche-mical Society,1998,145,3141.58 Spence J W, Haynie F H.Corrosion Testing and Evaluation: Silver Anniversary Volume,1990,1000,208.59 Graedel T E.Corrosion Science,1996,38,2153.60 Wang Y H, Xiao L R, Geng Z J, et al.Corrosion and Protection,2013,34(5),410(in Chinese).王彦红,肖来荣,耿占吉,等.腐蚀与防护,2013,34(5),410.61 Liu W, Cao F, Chen A, et al.Corrosion Science,2010,52,627.62 Liu W, Cao F, Jia B, et al.Corrosion Science,2010,52,639.63 Tokuda S, Muto I, Sugawara Y, et al.Corrosion Science,2017,129,126.64 Bakhsheshi-Rad H R, Hamzah E, Low H T, et al. Materials Science and Engineering: C,2017,73,215.65 Xu B S.Materials China,2014,33(7),405(in Chinese).徐滨士. 中国材料进展,2014,33(7),405.
[1] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[2] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[3] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[4] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[5] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[6] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[7] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[8] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[9] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[10] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[11] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[12] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[13] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[14] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[15] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed