Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3159-3167    https://doi.org/10.11896/cldb.20090363
  金属与金属基复合材料 |
空间大型桁架在轨增材制造技术的研究现状与展望
杨杰1,2,3, 黎静3, 吴文杰1,2,3, 于宁3
1 重庆大学,重庆 400044;
2 中国科学院大学重庆学院,重庆 400714;
3 中国科学院重庆绿色智能技术研究院,重庆 400714
Research Status and Prospect of On-orbit Additive Manufacturing Technology for Large Space Truss
YANG Jie1,2,3, LI Jing3, WU Wenjie1,2,3, YU Ning3
1 Chongqing University, Chongqing 400044, China;
2 Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China;
3 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
下载:  全 文 ( PDF ) ( 5800KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 空间桁架作为航天器结构的理想支撑平台,在深空探测、高分辨率对地观测等空间任务中得到了广泛应用。大型化、轻量化是航天器及其空间附属机构的发展趋势,但受地空运载能力与运载成本的约束,现有常规就地制造技术已无法满足大尺寸、高性能、复杂结构件的太空应用需求。在轨增材制造(在轨3D打印)技术可突破常规就地制造瓶颈,解决空间制备难题,实现低成本在轨建设。
在轨增材制造是一种在微/零重力作用、高交变温差、强辐射等极端环境条件下的新型制造技术,由于发展时间较短,技术成熟度较低,诸多基础科学问题与关键技术问题尚待解决。空间大型桁架的在轨增材制造不同于传统地面增材制造,是地面增材制造技术的拓展与延伸。目前,在基础研究方面,国内外已开展了空间微重力环境下的熔融沉积成形增材制造试验,验证了微重力环境下熔融沉积增材制造的可行性。在成形装备方面,中、美、欧等国家或联盟均研制了适用于空间站舱内的熔融沉积增材制造样机,而针对空间大型桁架在轨增材制造的舱外装备,尚处于概念设计向工程样机转化的阶段。在成形工艺方面,受限于装备进展,在轨熔融沉积成形工艺性能研究较少;在模拟微重力环境中增材制造方面,针对大尺寸、长轴径比聚合物及其复合材料熔融沉积成形制件的力学性能各向异性,已通过材料改性、层间粘结热调控等方法得到不同程度的改进。
本文系统总结了空间大型桁架在轨增材制造技术的发展现状与研究进展。针对在轨熔融沉积成形增材制造,归纳综述了空间微重力影响、在轨成形装备、成形工艺等关键瓶颈技术的研究现状,探讨了空间大型桁架在轨增材制造面临的挑战与发展趋势,为空间大型结构的在轨构建提供了理论基础与技术参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨杰
黎静
吴文杰
于宁
关键词:  空间大型桁架  在轨增材制造  熔融沉积成形  空间极端环境  装备  工艺性能    
Abstract: Space truss is widely used in deep space exploration, high-resolution earth observation and other space missions. Nowadays, spacecraft and its attachments are developing into large-scale and light-weight. However, due to the constraints of space-earth carrying capacity and cost, the conventional on-site manufacturing technology cannot be satisfied by the space application requirements of large-scale, high-performance and complex structures. The on-orbit additive manufacturing (on-orbit 3D printing) technology could break the technical bottleneck of on-ground manufacturing technologies to solve the space fabrication problems, and realize the low-cost construction.
On-orbit additive manufacturing is a new fabrication technology of implement in extreme environment such as micro/zero gravity, high alternating temperature and strong radiation. Due to the short development time and low technology maturity, many scientific problems and key technical problems still need to be verified and solved. The on-orbit additive manufacturing of large space truss is an extension of the ground additive manufacturing technology. Up to now, in the field of basic research, the fused deposition modeling (FDM) technology in zero-g environment have been carried out successfully and verified the feasibility of additive manufacturing technology in microgravity. In the field of additive manufacturing equipment, the prototype of FDM aboard the space station has been developed by China, USA and Europe. However, the device applied for the ono-rbit additive manufacturing of large space truss outboard the space station is still on the concept situation. In the field of forming process research, there are few studies on the performances of on-orbit fused deposition modeling due to the restriction of equipment development. In the field of additive manufacturing in simulated microgravity environment, the anisotropy of mechanical properties of large-size, long-axial-diameter ratio polymers and their composites by melt deposition has been improved by material modification and heat control of interlayer bonding.
This paper summarizes the research status and prospect of on-orbit additive manufacturing technology for large space truss. For the on-orbit FDM technology, it views the research status of the bottleneck technique such as microgravity effects, on-orbit equipment and forming process.The challenges and development trend of large space truss fabricated by on-orbit additive manufacturing are discussed. It could provide theoretical basics and technical references for the large structure of on-orbit fabrication research.
Key words:  large space truss    on-orbit additive manufacturing    fused deposition modeling    extreme environment in space    equipment    processing property
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  V524  
基金资助: 国家重点研发计划(2016YFB1100800); 国家自然科学基金委面上项目(51673198); 中国科学院西部青年学者人才资助项目(Y62A400V10)
作者简介:  杨杰,2007年7月本科毕业于西安科技大学电气与控制工程专业,获得工学学士学位。2012年7月毕业于中国矿业大学(北京)机械电子工程专业。现为重庆大学博士研究生,在黎静研究员及于宁助理研究员的指导下进行研究。主要研究领域为在轨3D打印与智能制造。
于宁,中国科学院重庆绿色智能技术研究院助理研究员。2008年7月本科毕业于郑州大学材料科学与工程学院,2011年7月硕士毕业于郑州大学材料科学与工程学院,2015年12月博士毕业于法国洛林大学法国科学院反应过程国家重点实验室。2015年12月回国后,先后入选中国科学院西部青年学者、中科院“青促会”、重庆市创新创业优秀人才项目,主持各级项目8项。主要从事高分子复合材料增材制造的研究工作。近年来,在复合材料与增材制造领域发表多篇论文,包括Materials & Design、Macromolecules、Polymer、J. Phys. Chem. B、J. Phys. Chem. C等。
引用本文:    
杨杰, 黎静, 吴文杰, 于宁. 空间大型桁架在轨增材制造技术的研究现状与展望[J]. 材料导报, 2021, 35(3): 3159-3167.
YANG Jie, LI Jing, WU Wenjie, YU Ning. Research Status and Prospect of On-orbit Additive Manufacturing Technology for Large Space Truss. Materials Reports, 2021, 35(3): 3159-3167.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090363  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3159
1 Long L H, Li P Q, Qin X D, et al.Astronautical Systems Engineering Technology,2018,2(2),1(in Chinese).龙乐豪,李平岐,秦旭东,等.宇航总体技术,2018,2(2),1.2 Chen L M.Spacecraft structures and mechanisms, Science and Technology of China Press, China,2005(in Chinese).陈烈民. 航天器结构与机构,中国科学技术出版社,2005.3 Watson J J, Collins T J, Bush H G, et al.In: IEEE Aerospace Confe-rence. Montana,2002,pp.7.4 Fenci G E, Currie N.International Journal of Space Structures,2017,32(2),112.5 Ju S, Zeng J C, Jiang D Z, et al.Materials Reports,2006,20(12),28(in Chinese).鞠苏,曾竟成,江大志,等.材料导报,2006,20(12),28.6 Hoyt R P, Cushing J I, Slostad J T, et al.In: AIAA SPACE 2013 Conference and Exposition. San Diego, CA,2013,pp.5509.7 Johnston M M, Werkheiser M J, Snyder M P, et al.In: AIAA SPACE 2014 Conference and Exposition. San Diego, CA,2014,pp.4470.8 Vickers J.NASA's additive manufacturing technology-driving exploration, NASA Report, USA,2020.9 Lu B H, Li D C.Machine Building & Automation,2013,42(4),1(in Chinese).卢秉恒,李涤尘.机械制造与自动化,2013,42(4),1.10 Will R, Rhodes M.Cooperative Intelligent Robotics in Space,1991,1387,60.11 Xu H B, Han X Z, Chen Y, et al.Space Electronic Technology,2018,15(2),42(in Chinese).许焕宾,韩修柱,陈燕,等.空间电子技术,2018,15(2),42.12 Homma M, Hama S, Kohata H, et al.Acta Astronautica,2003,53,477.13 Jaeger T, Mirczak W.In: 28th Annual AIAA/USU Conference on Small Satellites. Logan, Utah,2014.14 Meguro A, Ishikawa H, Tsujihata A.Journal of Spacecraft and Rockets,2006,43(4),780.15 Mitsugi J, Ando K, Senbokuya Y, et al.Acta Astronautica,2000,47(1),19.16 Takano T, Miura K, Natori M, et al.IEEE Transactions on Antennas and Propagation,2004,52(1),2.17 Mankins J, Kaya N, Vasile M.In: 10th International Energy Conversion Engineering Conference. Atlanta, Georgia,2012,pp.3978.18 Ma X F, Li Y, Xiao Y, et al.Space Electronic Technology,2018,15(2),16(in Chinese).马小飞,李洋,肖勇,等.空间电子技术,2018,15(2),16.19 Ding J F, Gao F, Zhong X P, et al.Scientia Sinica Physica, Mechanica & Astronomica,2019,49(2),54(in Chinese).丁继锋,高峰,钟小平,等.中国科学:物理学力学天文学,2019,49(2),54.20 Chen Y, Jia P, Yuan P P, et al.Satellite Application,2019(6),13(in Chinese).陈怡,贾平,袁培培,等.卫星应用,2019(6),13.21 Wang G, Zhao W, Liu Y F, et al.Scientia Sinica Physica, Mechanica & Astronomica,2020,50(4),95(in Chinese).王功,赵伟,刘亦飞,等.中国科学:物理学力学天文学,2020,50(4),95.22 Cesaretti G, Dini E, Kestelier X D, et al.Acta Astronautica,2014,93(93),430.23 Zhang Y Y, Jin Z J, Zhang W, et al.Materials Science Forum,2020,982,92.24 Zocca A, Lüchtenborg J, Mühler T, et al.Advanced Materials and Technologies,2019,4(10),1900506.25 Brown M A.Advances in Space Research,2011,48(11),1747.26 Santiago-Prowald J, Baier H.Ceas Space Journal,2013,5(3),89.27 Shi W J, Gao F, Chai H Y.Aerospace Materials & Technology,2019,49(4),1(in Chinese).石文静,高峰,柴洪友.宇航材料工艺,2019,49(4),1.28 Tang J M, Li S.Spacecraft Environment Engineering,2010,27(5),552.29 Yin Y X, Li H P.Spacecraft Recovery & Remote Sensing,2018,39(4),101(in Chinese).殷永霞,李皓鹏.航天返回与遥感,2018,39(4),101.30 邱惠中. 航天工艺,1990(6),52.31 Li T S, Chen J, Wang Z Q.Radiation Protection Bulletin,2008(2),1(in Chinese).李桃生,陈军,王志强.辐射防护通讯,2008(2),1.32 Wei M G, Wan S X, Yao K Z, et al.Manned Spaceflight,2007(4),1(in Chinese).韦明罡,万士昕,姚康庄,等.载人航天,2007(4),1.33 Xia Y L.Structure & Environment Engineering,1995(2),22(in Chinese).夏益霖. 强度与环境,1995(2),22.34 Jia Z X, Wang M K, Li H B, et al.Structure & Environment Enginee-ring,2019,46(5),7(in Chinese).贾洲侠,王梦魁,李海波,等.强度与环境,2019,46(5),7.35 Cooper K G, Griffin M R.Microgravity manufacturing via fused deposition, NASA Report, USA,2003.36 Snyder M, Dunn J, Gonzalez E.In: AIAA SPACE 2013 Conference and Exposition. San Diego, CA,2013,pp.5439.37 Werkheiser N.In-space manufacturing(ISM): 3D printing in space technology demonstration, NASA Report, USA,2015.38 Bean Q A, Cooper K G, Edmunson J E, et al.International space station (ISS) 3D printer performance and material characterization methodology, NASA Report, USA,2015.39 Snyder M, Werkheiser N.Additive manufacturing facility (AMF), NASA Report, USA,2016.40 Risdon D.In-space manufacturing (ISM) ISS refabricator technology de-monstration, NASA Report, USA,2019.41 Hoyt R P, Cushing J, Slostad J.SpiderFab: Process for on-orbit construction of kilometer-scale apertures, NASA Report, USA,2013.42 Prater T, Bean Q, Werkheiser N, et al.Rapid Prototyping Journal,2017,23(6),1212.43 Prater T, Werkheiser N, Ledbetter F, et al.The International Journal of Advanced Manufacturing Technology,2019,101(1),391.44 Prater T J, Bean Q A, Beshears R D, et al.Summary report on phase I results from the 3D printing in Zero G technology demonstration mission, volume I, NASA Report. USA,2016.45 Prater T J, Werkheiser N J, Ledbetter F E III.Summary report on phase I and phase II results from the 3D printing in Zero-G technology Demonstration Mission, volume II, NASA Report, USA,2018.46 Brenken B, Barocio E, Favaloro A, et al.Additive Manufacturing,2018,21,1.47 Duty C E, Kunc V, Compton B G, et al.Rapid Prototyping Journal,2017,23(1),181.48 Ferreira R T, Amatte I C, Dutra T, et al.Composites Part B-Enginee-ring,2017,124,88.49 Perez A R, Roberson D A, Wicker R B, et al.Journal of Failure Analysis and Prevention,2014,14(3),343.50 Zhong W, Li F, Zhang Z, et al.Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2001,301(2),125.51 Wu S H.Polymer interface and adhesion, New York: Marcel Dekker Inc, USA,1982.52 Voiutskii S S, Kaganoff S, Vakula V L.Autohesion and adhesion of high polymers, New York: Interscience, USA,1963.53 Costa S F, Duarte F M, Covas J A, et al.Virtual and Physical Prototyping,2015,10(1),35.54 Ravi A, Deshpande A, Hsu K, et al.Journal of Manufacturing Processes,2016,24,179.55 Kishore V, Ajinjeru C, Nycz A, et al.Additive Manufacturing,2017,14,7.56 Nycz A, Kishore V, Lindahl J, et al.Additive Manufacturing,2020,33,101068.57 Sweeney C B, Lackey B A, Pospisil M J, et al.Science Advances,2017,3(6),1700262.58 Li G, Zhao J, Wu W, et al.Materials,2018,11(5),826.59 Tofangchi A, Han P, Izquierdo J, et al.Polymers,2019,11(2),315.60 Lederle F, Meyer F, Brunotte G P, et al.Progress in Additive Manufacturing,2016,1(1-2),3.61 Oconnor H J, Dowling D P.Additive Manufacturing,2018,21,404.
[1] 栗卓新, 丛兴, 李红, Kim Hee Jin. 熔化极气体保护焊导电嘴载流磨损及使用寿命的研究进展[J]. 材料导报, 2020, 34(19): 19128-19133.
[2] 钱凡, 段雪珂, 杨文刚, 刘国齐, 李红霞. 镁铬耐火材料及高温装备绿色化应用研究进展[J]. 材料导报, 2019, 33(23): 3882-3891.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed