Abstract: Magnesia-chromium refractory is an alkaline refractory material with periclase and spinel (Mg, Fe) (Cr, Al, Fe)2O4 as the main crystalline phases. It has high refractoriness, high strength under high temperature, excellent thermal shock resistance, fine slag corrosion resistance and good economical efficiency, and has been widely used in iron and steel metallurgy, non-ferrous smelting, cement and other industries. Magnesium chromium refractories are the dominant materials in many key parts of high-temperature furnace. However, Cr3+ of Cr2O3 will be partly converted to Cr6+ at a certain temperature in oxidizing atmosphere or with alkaline oxides such as K2O, Na2O, CaO, etc., resulting in hexavalent chromium pollution, which is not line with green, environmentally friendly and efficient for high temperature industry. It is impossible to eliminate the hidden danger caused by Cr6+ in magnesium chromium refractories by regulating the industrial chain and taking a series of measures to restrain the formation of hexavalent chromium compounds. However, the most consistent and permanent way is to carry out the research and application of chromium-free refractories. In view of the pollution caused by the application of magnesia-chromium refractories in high-temperature industrial furnace, refractory resear-chers all over the world have successively carried out green refractories research and application for high temperature furnace. A large number of chromium-free research results have been achieved for cement rotary kiln and RH refining furnace, and positive social benefits have been achieved along with the production practice, especially the chromium-free refractories used in burning zone in cement rotary kiln. At present, the magnesia-calcium-zirconium refractories and magnesia spinel refractories have achieved better application effect in burning zone of cement rotary kiln, which can replace magnesia chromium bricks very well. The application result above-mentioned has greatly promoted the research and practice of chromium-free for RH refining furnace in iron and steel metallurgy. At present, refractories of chromium-free for RH refining furnace have been successfully developed, and there are many alternative refractories of chromium-free, for example, composite magnesia alumina spinel bricks are most widely used. Refractories for some RH refining furnace have been chromium-free in many countries, and the development idea of greenization has been realized. There are two points by summarizing the above experience: (i) relying on industry independent technological innovation to realize the social value of enterprises; (ii) relying on the improvement of public awareness of environmental protection and the guiding role of government policies related to environmental protection industry. The joint forces of above two can promote application and development of greenization of high temperature furnaces At present and some time to come in the future, magnesia-chromium refractories are still difficult to be replaced in high temperature furnace of non-ferrous smelting and the dominant materials in many key parts of high-temperature furnace. It is a long way to carry out effective research and application of chromium-free bricks. Therefore, it is still an important subject to improve the properties of magnesia-chromium refractories, improve service life and reduce material consumption. Therefore, the following two points of work need to be done well: (i) improving the corrosion resis-tance of materials to FeO-SiO2 slag, (ii) improving resistance to copper-sulfur penetration. While drawing on the successful experience of chro-mium-free practice in other fields, we should also see that with the implementation of new high temperature industrial processes and the emergence of new technologies and furnace, magnesium chromium refractories still have certain application prospects in some new fields. Therefore, the research and application in greenization for high temperature furnace is still a lasting and continuous progressive process. This paper summarizes the characteristics of magnesia-chromium refractory and its application and damage mechanism in high-temperature furnace. It emphatically introduces the positive progress in the research and application of greenization for cement rotary kiln and RH furnace, and analyses the main difficulties and research directions of greenization of copper furnace, to achieve less consumption of magnesia-chromium bricks in copper furnace while actively promoting greenization of rotary kiln and RH furnace.
钱凡, 段雪珂, 杨文刚, 刘国齐, 李红霞. 镁铬耐火材料及高温装备绿色化应用研究进展[J]. 材料导报, 2019, 33(23): 3882-3891.
QIAN Fan, DUAN Xueke, YANG Wengang, LIU Guoqi, LI Hongxia. Research Progress of Magnesia Chrome Refractories and Their Applicationin Greenization for High Temperature Furnace. Materials Reports, 2019, 33(23): 3882-3891.
Miretzky P, Cirelli A F. Journal of Hazardous Materials,2010,180(1),1.2 Vasant C, Balamurugan K, Rajaram R, et al. Biochemical and Biophysical Research Communications,2001,285(5),1360.3 Kotyzova D, Anna H, Monika B, et al. Toxicology & Industrial Health,2015,31(11),1044.4 Zendehdel R, Shetab-Boushehri S V, Azari M R, et al. Drug and Chemical Toxicology,2015,38(2),6. 5 Akira Y. China’s Refractories,2007,16(3),3.6 Chen Z Y. Naihuo Cailiao,2010,44(6),404(in Chinese).陈肇友.耐火材料,2010,44(6),404.7 Li H X. Handbook of refractory, Metallurgy Industry Press, China,2009(in Chinese).李红霞.耐火材料手册,冶金工业出版社,2009.8 Wang W B. Refractories technology, Metallurgy Industry Press, China,2009(in Chinese).王维邦.耐火材料工艺学,冶金工业出版社,2005.9 Chen Z Y. Naihuo Cailiao,1992,26(2),108(in Chinese).陈肇友.耐火材料,1992,26(2),108.10 Chen Z Y, Wu X Z, Ye F B. Journal of the Chinese Ceramic Society,1985,13(4),475(in Chinese).陈肇友,吴学真,叶方保.硅酸盐学报,1985,13(4),476.11 Ichikawa K, Nakamura R. Shinagawa Technical Report,1996,39,25.12 Gao Z X, Ping Z F, Zhang Z Y, et al. Microstructure of refractories, Metallurgy Industry Press, China,2002(in Chinese).高振昕,平增福,张战营,等.耐火材料显微结构,冶金工业出版社,2002.13 Levin E M, Robbins C R, McMurdie H F. Phase diagrams for ceramists, The American Ceramic Society,USA,1985.14 Bray D J. American Ceramic Society Bulletin,1985,64(7),1012.15 Bartha P, Klischat H J. Refractories,1999,6(3),31.16 Lee W E. Iranian Journal of Materials Science & Engineering,2004.17 Huang F, Liu C, Maruoka N, et al. Ironmaking & Steelmaking,2015,42(7),553.18 Schlesinger M E. Mineral Processing & Extractive Metallurgy Review,1996,16(2),125.19 Chattopadhyay A K, Dasgupta A. Proceedings of UNITECR 2015. Vienna,2015.20 Yuan L,Chen X F,Liu X J. Naihuo Cailiao,2016,50(3),161(in Chinese).袁林,陈雪峰,刘锡俊.耐火材料,2016,50(3),161.21 Moore B, Frith M, Evans D. World Cement,1991,12,5.22 Chen Z Y, Li H X. Naihuo Cailiao,2005,39(1),6(in Chinese).陈肇友,李红霞.耐火材料,2005,39(1),6.23 Wang J Z, Yuan L, Cheng J. Naihuo Cailiao,2014,48(3),161(in Chinese).王杰曾,袁林,成洁.耐火材料,2014,48(3),161.24 Zhang D Y. Development and application of magnesia-chrome brick for dry-process cement rotary kiln. Master’s Thesis, Xi’an University of Architecture and Technology, China,2003(in Chinese).章道运.大型干法水泥窑用镁铬砖的研制与应用研究.硕士学位论文,西安建筑科技大学,2003.25 Qotaibi Z, Diouri A, Boukhari A, et al. Annales De Chimie Science Des Matériaux,1998,23(1),169.26 Yun S N, Zhang D Y, Yu R H, et al. Naihuo Cailiao,2004,38(4),238(in Chinese).云斯宁,章道运,于仁红,等.耐火材料,2004,38(4),238.27 Ichikawa K, Minato K, Okamoto S, et al. Taikabutsu,1988,40(9),573.28 Miyajima M, Fujii K, Taniguchi T, et al. Taikabutsu,1990,42(8),451.29 Mosser J, Buchebner G, Dösinger K. Veitsch-Radex Rundschau,1997,1,11.30 Engel R, Marr R, Pretorius E. Iron Steelmaker,1997,24,59.31 Dong H K, Yoo S H, Chang S H, et al. Journal of the Ceramic Society of Japan,2005,113(1318),405.32 Jiang J M. China Metal Bulletin,2008(17),29(in Chinese).蒋继穆.中国金属通报,2008(17),29.33 Malfliet A, Lotfian S, Scheunis L, et al. Journal of the European Ceramic Society,2014,34(3),849.34 Cherif K, Pandolfelli V, Rigaud M. Journal of the Canadian Ceramic Society,1997,66(3),210.35 Wang J B, Liang Y H, Li Y, et al. Naihuo Cailiao,2007,41(1),74(in Chinese).王继宝,梁永和,李勇,等.耐火材料,2007,41(1),74.36 Zou Xing, Yu Shuang. Naihuo Cailiao,2017(6),446(in Chinese).邹兴,于爽.耐火材料,2017(6),446.37 Xu S B, Xu H F. China Metallurgy,2016,26(10),33(in Chinese).徐少兵,许海法.中国冶金,2016,26(10),33.38 Li J Q, Wang W W, Gan F F, et al. Naihuo Cailiao,2011,45(1),1(in Chinese).李坚强,王文武,甘菲芳,等.耐火材料,2011,45(1),1.39 Hon M H, Hsu C C, Wang M C . Materials Transactions,2008,49(1),107.40 Hon M H, Hsu C C, Wang M C. Materials Chemistry & Physics,2008,110(2),247.41 Wang M C, Hsu C C, Hon M H. Ceramics International,2009,35(4),1501.42 Kashcheev I D. Refractories & Industrial Ceramics,2016,56(5),1.43 Szczerba J, S' nieek E, Antonovi V. Refractories & Industrial Ceramics,2017,58(4),426.44 Nievoll J. Zement-Kalk-Gips International,1995,48(3),146.45 Toru H Yoshiharu K, Fumihito O. Taikabutsu Overseas,2000,20(4),266.46 Guo Z Q. Bulletin of the Chinese Ceramic Society,2006(2),51(in Chinese).郭宗奇.硅酸盐通报,2006(2),51.47 Buchebner G, Molinari T, Harmuth H. In:Proceedings of UNITECR 1999.Berlin,1999,pp.201.48 Nievoll J, Guo Z Q, Shi S. RHI Bulletin,2006,3,1517.49 Aksel C, Rand B, Riley F L, et al. Journal of the European Ceramic Society,2002,22(5),745.50 Aksel C, Rand B, Riley F L, et al. Journal of the European Ceramic Society,2004,24(9),2839.51 Hiroshi M, Masato M, Toyoyasu O, et al. In:Procedings of UNITECR 2003. Osaka,2003,pp.165.52 Suebthawilkul S, Patchararungruang N, Prasertphol T, et al. China’s Refractories,2017,26(2),13.53 Chen J, Yan M, Su J, et al. Ceramics International,2016,42(1),569.54 Komatsu H, Arai M, Ukawa S. Taikabutsu Overseas,1999,19(4),3.55 Liu G, Li N, Yan W, et al. Ceramics International,2014,40(6),8149.56 Chen J, Yu L, Sun J, et al. Journal of the European Ceramic Society,2011,31(3),259.57 Rodriguez G A C, Guillen G G, Palma M I M, et al. International Journal of Applied Ceramic Technology,2015,12(S2),34.58 Botta P M, Bercoff P G, Aglietti E F, et al. Journal of Materials Science,2002,37(12),2563.59 Ma S L, Li Y, Li Y J, et al. Naihuo Cailiao,2013,47(3),161(in Chinese).马淑龙,李勇,李燕京,等.耐火材料,2013,47(3),161.60 Chen J, Yan M, Su J, et al. Journal of the Ceramic Society of Japan,2015,123(1439),595.61 Guo Z Q, Josef N. China Cement,2007(5),63(in Chinese).郭宗奇,Josef Nievoll.中国水泥,2007(5),63.62 Padhi L N, Sahu P, Sahoo N, et al. Transactions-Indian Ceramic Society,2017,76(3),196.63 Bartha P, Klischat H J. Zement-Kalk-Gips International,1994,47(10),277.64 Arai M, Shigeru U. In:Procedings of UNITECR 2003. Osaka,2003,pp.43.65 Serena S, Sainz M, De A S, Caballero A. Journal of the American Cera-mic Society,2004,87(22),68.66 Serena S, Sainz M, De A S, et al. Journal of the European Ceramic Society,2005,25(6),81.67 Serena S, Sainz M A, Caballero A. Journal of the European Ceramic So-ciety,2009,29(11),2199.68 álvaro-Obregón A, Rodríguez-Galicia J L, López-Cuevas J, et al. Journal of the European Ceramic Society,2011,31,61.69 Du Y, Jin Z, Huang P. Journal of the American Ceramic Society,1992,75(11),3040.70 Du Y, Jin Z, Huang P. Calphad-computer Coupling of Phase Diagrams & Thermochemistry,1992,16(3),221.71 Serena S, Sainz M A, Caballero A. Journal of the European Ceramic Society,2004,24(8),2399.72 Kozuka H, Kajita Y, Tuchiya Y, et al. In:Proceedings of UNITECR 1993. Sao Paulo,1993,pp.1027.73 Kozuka H, Kajita Y, Tuchiya Y, et al. In:Proceedings of UNITECR 1995. Orlando,1995,pp.256.74 Brett N H, Gonzalez M, Bouillot J, et al. Journal of Materials Science,1984,19(4),1349.75 Rodríguez E A, Castillo G A, Das T K, et al. Journal of the European Ceramic Society,2013,33(13-14),2767.76 Rodríguez E, Castillo G A, Contreras J, et al. Ceramics International,2012,38(8),6769.77 Szczerba J. Advances in Science & Technology,2010,70(7),15.78 Zhou F F, Xing F Y, Jiang M, et al. Shanghai Metals,2012(3),33(in Chinese).周菲菲,邢方圆,姜敏,等.上海金属,2012(3),33.79 Fang B X, Mou J N, Zheng Y Y. Naihuo Cailiao,2012,45(3),375(in Chinese).方斌祥,牟济宁,郑怡裕,等.耐火材料,2012,45(3),375.80 Zhao M, Chen R R, Shen Z M, et al. Naihuo Cailiao,2013,47(6),433(in Chinese).赵明,陈荣荣,沈钟铭,等.耐火材料,2013,47(6),433.81 Guo M X. Foreign Refractories,2005,25(6),44(in Chinese).桂明玺.国外耐火材料,2005,25(6),44.82 Xu Y Q, Ye G T. Naihuo Cailiao,2003,37(2),105(in Chinese).徐延庆,叶国田.耐火材料,2003,37(2),105.83 Chen R R, He P X, Mou J N, et al. Naihuo Cailiao,2005,39(5),357(in Chinese).陈荣荣,何平显,牟济宁,等.耐火材料,2005,39(5),357.84 Chen S L, Sun J L, Xiong X Y, et al. Steelmaking,2008,24(6),53(in Chinese).陈松林,孙加林,熊小勇,等.炼钢,2008,24(6),53.85 Chen S J, Sun X. Energy for Metallurgical Industry,2006,25(1),36(in Chinese).陈树江,孙逊,王学达.冶金能源,2006,25(1),36.86 Huang F, Liu C, Maruoka N, et al. Ironmaking & Steelmaking,2015,42(7),553.87 Chen S L, Yuan L, Zeng D F, et al. Naihuo Cailiao,2010,44(5),341(in Chinese).陈松林,袁林,曾大凡,等.耐火材料,2010,44(5),341.88 Kai T, Isaji K, Torii K. Journal of the Technical Association of Refractories,2002,4(22),521.89 Toyoyasu O, Akiniro T, Isamu S. In:Proceedings of UNITCER 1999. Berlin,1999,pp.269.90 Shimizu K, Hokii T, Asano K.In: Proceedings of UNITECR 2003. Osaka,2003,pp.118.91 Ishii H, Kanatani S, Sasaki K, et al. In:Proceedings of UNITCER 2003.Osaka,2003,pp.114.92 Karakus M, Crites M D, Schlesinger M E. Journal of Microscopy,2010,200(1),50.93 Petkov V, Jones P T, Boydens E, et al. Journal of the European Ceramic Society,2007,27(6),2433.94 Chen Z Y. Naihuo Cailiao,2008,42(2),81(in Chinese).陈肇友.耐火材料,2008,42(2),81.95 Haldar M K, Tripathi H S, Das S K, et al. Ceramics International,2004,30(6),911.96 Xu L L, Zhai Y J, Liu X J, et al. Naihuo Cailiao,2016,50(6),461(in Chinese).徐琳琳,翟耀杰,刘锡俊,等.耐火材料,2016,50(6),461.97 Zhao H Z, Li H, Wei J X, et al. Naihuo Cailiao,2003,37(5),256(in Chinese).赵惠忠,李红,魏建修,等.耐火材料,2003,37(5),256.98 Wang B Y, Yu R H, Shi S H, et al. Naihuo Cailiao,2008,42(4),279(in Chinese).王宝玉,于仁红,师素环,等.耐火材料,2008,42(4),279.99 Deng Y Y, Wang H Z, Zhao H Z, et al. Naihuo Cailiao,2005,39(6),401(in Chinese).邓勇跃,汪厚植,赵惠忠.耐火材料,2005,39(6),401.100 Li M Z, Xu B S. Metallurgy technology of cupper, Chemical Industry Press, China,2012(in Chinese).李明照,许并社.铜冶炼工艺,化学工业出版社,2012.