Please wait a minute...
材料导报  2019, Vol. 33 Issue (23): 3882-3891    https://doi.org/10.11896/cldb.18110166
  材料与可持续发展(二)――材料绿色制造与加工* |
镁铬耐火材料及高温装备绿色化应用研究进展
钱凡, 段雪珂, 杨文刚, 刘国齐, 李红霞
中钢集团洛阳耐火材料研究院有限公司, 先进耐火材料国家重点实验室,洛阳 471039
Research Progress of Magnesia Chrome Refractories and Their Applicationin Greenization for High Temperature Furnace
QIAN Fan, DUAN Xueke, YANG Wengang, LIU Guoqi, LI Hongxia
State Key Laboratory of Advanced Refractories,Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039
下载:  全 文 ( PDF ) ( 2461KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁铬耐火材料是以方镁石和镁、铁尖晶石(Mg,Fe)(Cr,Al,Fe)2O4为主晶相的碱性耐火材料,具有耐火度高、高温强度大、热震稳定性优良以及抗熔渣侵蚀性和经济性等优点,在钢铁、有色、水泥等高温工业装备领域有着广泛的应用,是诸多高温装备炉衬关键部位的主导材料。然而镁铬耐火材料在氧化性气氛或与碱性氧化物如K2O、Na2O、CaO等共存时,在一定温度下其Cr3+会部分转化为Cr6+,由此带来六价铬污染问题,与高温工业绿色、环保、高效的发展理念相违背。通过法规对镁铬耐火材料产业链进行规范引导、采取系列措施抑制镁铬耐火材料六价铬化合物的形成均无法从根本上消除Cr6+带来的隐患,而最根本的办法是开展耐火材料无铬化研究与应用。
针对高温工业装备应用镁铬耐火材料带来的污染问题,国内外耐火材料工作者相继开展了高温装备绿色化研究与应用工作。其中水泥回转窑、RH精炼炉用耐火材料取得的无铬化研究成果已经实现了产业实践,产生了积极的社会效益,特别是水泥回转窑烧成带用耐火材料率先实现了无铬化。目前在水泥回转窑烧成带取得较好使用效果的是镁钙锆质耐火材料及镁尖晶石质耐火材料,它们能够替代镁铬砖并满足服役要求,上述研究与应用成果极大促进了钢铁工业用RH精炼炉无铬化的研究与实践。当前RH精炼炉无铬化研究已经成功获得应用,并且有多种不含铬材料替代方案,其中以复合镁铝尖晶石砖的应用最为普遍,在国内外一些RH精炼炉用耐火材料已经相继实现无铬化,实现了绿色化发展理念。上述成功经验有以下两点:(1)依靠行业自主技术创新,实现企业的社会价值;(2)依赖于社会大众环保意识的提高以及政府相关环保产业政策的引导,两种合力共同推动了高温装备的绿色化应用与发展。
在今后的一段时期内,镁铬耐火材料在有色等领域依然难以代替,仍然是一些炉衬关键部位的主导材料,开展有效的无铬化研究与应用任重道远,因此提高镁铬砖性能、延长服役寿命以及减少材料消耗仍是重要课题。为此需要做好以下两点:(1)提高材料抗FeO-SiO2渣侵蚀性能;(2)提高材料的抗铜硫渗透性能。随着高温工业新工艺的实施和新技术、新装备的涌现,镁铬耐火材料在一些新领域也有一定的应用前景,因此开展高温装备绿色化研究与应用仍然是一个持久和不断进步的过程。
本文归纳了镁铬耐火材料的特性及其在高温工业装备中的应用与损毁机理,重点介绍了水泥回转窑、钢水精炼RH炉绿色化研究与应用取得的积极进展,分析了炼铜炉绿色化应用存在的主要难点以及研究方向,指出了在积极推行回转窑、RH炉绿色化的同时,提高镁铬砖性能并减少其在炼铜炉中的消耗仍然是重要课题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钱凡
段雪珂
杨文刚
刘国齐
李红霞
关键词:  镁铬耐火材料  高温装备  无铬化  绿色化    
Abstract: Magnesia-chromium refractory is an alkaline refractory material with periclase and spinel (Mg, Fe) (Cr, Al, Fe)2O4 as the main crystalline phases. It has high refractoriness, high strength under high temperature, excellent thermal shock resistance, fine slag corrosion resistance and good economical efficiency, and has been widely used in iron and steel metallurgy, non-ferrous smelting, cement and other industries. Magnesium chromium refractories are the dominant materials in many key parts of high-temperature furnace. However, Cr3+ of Cr2O3 will be partly converted to Cr6+ at a certain temperature in oxidizing atmosphere or with alkaline oxides such as K2O, Na2O, CaO, etc., resulting in hexavalent chromium pollution, which is not line with green, environmentally friendly and efficient for high temperature industry. It is impossible to eliminate the hidden danger caused by Cr6+ in magnesium chromium refractories by regulating the industrial chain and taking a series of measures to restrain the formation of hexavalent chromium compounds. However, the most consistent and permanent way is to carry out the research and application of chromium-free refractories.
In view of the pollution caused by the application of magnesia-chromium refractories in high-temperature industrial furnace, refractory resear-chers all over the world have successively carried out green refractories research and application for high temperature furnace. A large number of chromium-free research results have been achieved for cement rotary kiln and RH refining furnace, and positive social benefits have been achieved along with the production practice, especially the chromium-free refractories used in burning zone in cement rotary kiln. At present, the magnesia-calcium-zirconium refractories and magnesia spinel refractories have achieved better application effect in burning zone of cement rotary kiln, which can replace magnesia chromium bricks very well. The application result above-mentioned has greatly promoted the research and practice of chromium-free for RH refining furnace in iron and steel metallurgy. At present, refractories of chromium-free for RH refining furnace have been successfully developed, and there are many alternative refractories of chromium-free, for example, composite magnesia alumina spinel bricks are most widely used. Refractories for some RH refining furnace have been chromium-free in many countries, and the development idea of greenization has been realized. There are two points by summarizing the above experience: (i) relying on industry independent technological innovation to realize the social value of enterprises; (ii) relying on the improvement of public awareness of environmental protection and the guiding role of government policies related to environmental protection industry. The joint forces of above two can promote application and development of greenization of high temperature furnaces
At present and some time to come in the future, magnesia-chromium refractories are still difficult to be replaced in high temperature furnace of non-ferrous smelting and the dominant materials in many key parts of high-temperature furnace. It is a long way to carry out effective research and application of chromium-free bricks. Therefore, it is still an important subject to improve the properties of magnesia-chromium refractories, improve service life and reduce material consumption. Therefore, the following two points of work need to be done well: (i) improving the corrosion resis-tance of materials to FeO-SiO2 slag, (ii) improving resistance to copper-sulfur penetration. While drawing on the successful experience of chro-mium-free practice in other fields, we should also see that with the implementation of new high temperature industrial processes and the emergence of new technologies and furnace, magnesium chromium refractories still have certain application prospects in some new fields. Therefore, the research and application in greenization for high temperature furnace is still a lasting and continuous progressive process.
This paper summarizes the characteristics of magnesia-chromium refractory and its application and damage mechanism in high-temperature furnace. It emphatically introduces the positive progress in the research and application of greenization for cement rotary kiln and RH furnace, and analyses the main difficulties and research directions of greenization of copper furnace, to achieve less consumption of magnesia-chromium bricks in copper furnace while actively promoting greenization of rotary kiln and RH furnace.
Key words:  magnesium chromium refractories    high temperature furnace    chromium-free    greenization
               出版日期:  2019-12-10      发布日期:  2019-09-30
ZTFLH:  TQ175.7  
  X773  
基金资助: 国家自然科学基金(51772277;51372231);国家重点研发计划(2017YFB0304000)
作者简介:  钱凡,高级工程师,2010年毕业于洛阳耐火材料研究院,师承李红霞教授,获工学硕士学位,现从事功能耐火材料及高抗热震性陶瓷材料的开发工作,曾获得河南省科技进步一等奖。近年来,在功能耐火材料及高温陶瓷领域发表学术论文20余篇,授权发明专利10余项。
李红霞,教授级高工,博士研究生导师,中钢集团洛阳耐火材料研究院院长、中国中钢股份有限公司副总工程师,先进耐火材料国家重点实验室主任。曾任国际标准化组织耐火材料技术委员会主席,联合国际耐火材料会议执行委员会委员,中国金属学会常务理事,中国金属学会耐火材料分会理事长,全国耐标委主任委员,河南省中原学者,第三届“杰出工程师奖”获得者,“新世纪百千万人才工程”国家级人选,第十一、十三届全国人代代表。长期从事冶金等行业新技术、新装备用关键耐火材料的研究与工程化应用,主持国家863、973、国家科技支撑计划项目、国家发改委重点产业化项目、国家自然科学基金项目、创新能力建设等省部级以上项目20项,授权专利30余项。累计发表论文180多篇,专著2部,获国家科学技术发明二等奖一项,省部级一等奖5项。
引用本文:    
钱凡, 段雪珂, 杨文刚, 刘国齐, 李红霞. 镁铬耐火材料及高温装备绿色化应用研究进展[J]. 材料导报, 2019, 33(23): 3882-3891.
QIAN Fan, DUAN Xueke, YANG Wengang, LIU Guoqi, LI Hongxia. Research Progress of Magnesia Chrome Refractories and Their Applicationin Greenization for High Temperature Furnace. Materials Reports, 2019, 33(23): 3882-3891.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110166  或          http://www.mater-rep.com/CN/Y2019/V33/I23/3882
1 Miretzky P, Cirelli A F. Journal of Hazardous Materials,2010,180(1),1.2 Vasant C, Balamurugan K, Rajaram R, et al. Biochemical and Biophysical Research Communications,2001,285(5),1360.3 Kotyzova D, Anna H, Monika B, et al. Toxicology & Industrial Health,2015,31(11),1044.4 Zendehdel R, Shetab-Boushehri S V, Azari M R, et al. Drug and Chemical Toxicology,2015,38(2),6. 5 Akira Y. China’s Refractories,2007,16(3),3.6 Chen Z Y. Naihuo Cailiao,2010,44(6),404(in Chinese).陈肇友.耐火材料,2010,44(6),404.7 Li H X. Handbook of refractory, Metallurgy Industry Press, China,2009(in Chinese).李红霞.耐火材料手册,冶金工业出版社,2009.8 Wang W B. Refractories technology, Metallurgy Industry Press, China,2009(in Chinese).王维邦.耐火材料工艺学,冶金工业出版社,2005.9 Chen Z Y. Naihuo Cailiao,1992,26(2),108(in Chinese).陈肇友.耐火材料,1992,26(2),108.10 Chen Z Y, Wu X Z, Ye F B. Journal of the Chinese Ceramic Society,1985,13(4),475(in Chinese).陈肇友,吴学真,叶方保.硅酸盐学报,1985,13(4),476.11 Ichikawa K, Nakamura R. Shinagawa Technical Report,1996,39,25.12 Gao Z X, Ping Z F, Zhang Z Y, et al. Microstructure of refractories, Metallurgy Industry Press, China,2002(in Chinese).高振昕,平增福,张战营,等.耐火材料显微结构,冶金工业出版社,2002.13 Levin E M, Robbins C R, McMurdie H F. Phase diagrams for ceramists, The American Ceramic Society,USA,1985.14 Bray D J. American Ceramic Society Bulletin,1985,64(7),1012.15 Bartha P, Klischat H J. Refractories,1999,6(3),31.16 Lee W E. Iranian Journal of Materials Science & Engineering,2004.17 Huang F, Liu C, Maruoka N, et al. Ironmaking & Steelmaking,2015,42(7),553.18 Schlesinger M E. Mineral Processing & Extractive Metallurgy Review,1996,16(2),125.19 Chattopadhyay A K, Dasgupta A. Proceedings of UNITECR 2015. Vienna,2015.20 Yuan L,Chen X F,Liu X J. Naihuo Cailiao,2016,50(3),161(in Chinese).袁林,陈雪峰,刘锡俊.耐火材料,2016,50(3),161.21 Moore B, Frith M, Evans D. World Cement,1991,12,5.22 Chen Z Y, Li H X. Naihuo Cailiao,2005,39(1),6(in Chinese).陈肇友,李红霞.耐火材料,2005,39(1),6.23 Wang J Z, Yuan L, Cheng J. Naihuo Cailiao,2014,48(3),161(in Chinese).王杰曾,袁林,成洁.耐火材料,2014,48(3),161.24 Zhang D Y. Development and application of magnesia-chrome brick for dry-process cement rotary kiln. Master’s Thesis, Xi’an University of Architecture and Technology, China,2003(in Chinese).章道运.大型干法水泥窑用镁铬砖的研制与应用研究.硕士学位论文,西安建筑科技大学,2003.25 Qotaibi Z, Diouri A, Boukhari A, et al. Annales De Chimie Science Des Matériaux,1998,23(1),169.26 Yun S N, Zhang D Y, Yu R H, et al. Naihuo Cailiao,2004,38(4),238(in Chinese).云斯宁,章道运,于仁红,等.耐火材料,2004,38(4),238.27 Ichikawa K, Minato K, Okamoto S, et al. Taikabutsu,1988,40(9),573.28 Miyajima M, Fujii K, Taniguchi T, et al. Taikabutsu,1990,42(8),451.29 Mosser J, Buchebner G, Dösinger K. Veitsch-Radex Rundschau,1997,1,11.30 Engel R, Marr R, Pretorius E. Iron Steelmaker,1997,24,59.31 Dong H K, Yoo S H, Chang S H, et al. Journal of the Ceramic Society of Japan,2005,113(1318),405.32 Jiang J M. China Metal Bulletin,2008(17),29(in Chinese).蒋继穆.中国金属通报,2008(17),29.33 Malfliet A, Lotfian S, Scheunis L, et al. Journal of the European Ceramic Society,2014,34(3),849.34 Cherif K, Pandolfelli V, Rigaud M. Journal of the Canadian Ceramic Society,1997,66(3),210.35 Wang J B, Liang Y H, Li Y, et al. Naihuo Cailiao,2007,41(1),74(in Chinese).王继宝,梁永和,李勇,等.耐火材料,2007,41(1),74.36 Zou Xing, Yu Shuang. Naihuo Cailiao,2017(6),446(in Chinese).邹兴,于爽.耐火材料,2017(6),446.37 Xu S B, Xu H F. China Metallurgy,2016,26(10),33(in Chinese).徐少兵,许海法.中国冶金,2016,26(10),33.38 Li J Q, Wang W W, Gan F F, et al. Naihuo Cailiao,2011,45(1),1(in Chinese).李坚强,王文武,甘菲芳,等.耐火材料,2011,45(1),1.39 Hon M H, Hsu C C, Wang M C . Materials Transactions,2008,49(1),107.40 Hon M H, Hsu C C, Wang M C. Materials Chemistry & Physics,2008,110(2),247.41 Wang M C, Hsu C C, Hon M H. Ceramics International,2009,35(4),1501.42 Kashcheev I D. Refractories & Industrial Ceramics,2016,56(5),1.43 Szczerba J, S' nieek E, Antonovi V. Refractories & Industrial Ceramics,2017,58(4),426.44 Nievoll J. Zement-Kalk-Gips International,1995,48(3),146.45 Toru H Yoshiharu K, Fumihito O. Taikabutsu Overseas,2000,20(4),266.46 Guo Z Q. Bulletin of the Chinese Ceramic Society,2006(2),51(in Chinese).郭宗奇.硅酸盐通报,2006(2),51.47 Buchebner G, Molinari T, Harmuth H. In:Proceedings of UNITECR 1999.Berlin,1999,pp.201.48 Nievoll J, Guo Z Q, Shi S. RHI Bulletin,2006,3,1517.49 Aksel C, Rand B, Riley F L, et al. Journal of the European Ceramic Society,2002,22(5),745.50 Aksel C, Rand B, Riley F L, et al. Journal of the European Ceramic Society,2004,24(9),2839.51 Hiroshi M, Masato M, Toyoyasu O, et al. In:Procedings of UNITECR 2003. Osaka,2003,pp.165.52 Suebthawilkul S, Patchararungruang N, Prasertphol T, et al. China’s Refractories,2017,26(2),13.53 Chen J, Yan M, Su J, et al. Ceramics International,2016,42(1),569.54 Komatsu H, Arai M, Ukawa S. Taikabutsu Overseas,1999,19(4),3.55 Liu G, Li N, Yan W, et al. Ceramics International,2014,40(6),8149.56 Chen J, Yu L, Sun J, et al. Journal of the European Ceramic Society,2011,31(3),259.57 Rodriguez G A C, Guillen G G, Palma M I M, et al. International Journal of Applied Ceramic Technology,2015,12(S2),34.58 Botta P M, Bercoff P G, Aglietti E F, et al. Journal of Materials Science,2002,37(12),2563.59 Ma S L, Li Y, Li Y J, et al. Naihuo Cailiao,2013,47(3),161(in Chinese).马淑龙,李勇,李燕京,等.耐火材料,2013,47(3),161.60 Chen J, Yan M, Su J, et al. Journal of the Ceramic Society of Japan,2015,123(1439),595.61 Guo Z Q, Josef N. China Cement,2007(5),63(in Chinese).郭宗奇,Josef Nievoll.中国水泥,2007(5),63.62 Padhi L N, Sahu P, Sahoo N, et al. Transactions-Indian Ceramic Society,2017,76(3),196.63 Bartha P, Klischat H J. Zement-Kalk-Gips International,1994,47(10),277.64 Arai M, Shigeru U. In:Procedings of UNITECR 2003. Osaka,2003,pp.43.65 Serena S, Sainz M, De A S, Caballero A. Journal of the American Cera-mic Society,2004,87(22),68.66 Serena S, Sainz M, De A S, et al. Journal of the European Ceramic Society,2005,25(6),81.67 Serena S, Sainz M A, Caballero A. Journal of the European Ceramic So-ciety,2009,29(11),2199.68 álvaro-Obregón A, Rodríguez-Galicia J L, López-Cuevas J, et al. Journal of the European Ceramic Society,2011,31,61.69 Du Y, Jin Z, Huang P. Journal of the American Ceramic Society,1992,75(11),3040.70 Du Y, Jin Z, Huang P. Calphad-computer Coupling of Phase Diagrams & Thermochemistry,1992,16(3),221.71 Serena S, Sainz M A, Caballero A. Journal of the European Ceramic Society,2004,24(8),2399.72 Kozuka H, Kajita Y, Tuchiya Y, et al. In:Proceedings of UNITECR 1993. Sao Paulo,1993,pp.1027.73 Kozuka H, Kajita Y, Tuchiya Y, et al. In:Proceedings of UNITECR 1995. Orlando,1995,pp.256.74 Brett N H, Gonzalez M, Bouillot J, et al. Journal of Materials Science,1984,19(4),1349.75 Rodríguez E A, Castillo G A, Das T K, et al. Journal of the European Ceramic Society,2013,33(13-14),2767.76 Rodríguez E, Castillo G A, Contreras J, et al. Ceramics International,2012,38(8),6769.77 Szczerba J. Advances in Science & Technology,2010,70(7),15.78 Zhou F F, Xing F Y, Jiang M, et al. Shanghai Metals,2012(3),33(in Chinese).周菲菲,邢方圆,姜敏,等.上海金属,2012(3),33.79 Fang B X, Mou J N, Zheng Y Y. Naihuo Cailiao,2012,45(3),375(in Chinese).方斌祥,牟济宁,郑怡裕,等.耐火材料,2012,45(3),375.80 Zhao M, Chen R R, Shen Z M, et al. Naihuo Cailiao,2013,47(6),433(in Chinese).赵明,陈荣荣,沈钟铭,等.耐火材料,2013,47(6),433.81 Guo M X. Foreign Refractories,2005,25(6),44(in Chinese).桂明玺.国外耐火材料,2005,25(6),44.82 Xu Y Q, Ye G T. Naihuo Cailiao,2003,37(2),105(in Chinese).徐延庆,叶国田.耐火材料,2003,37(2),105.83 Chen R R, He P X, Mou J N, et al. Naihuo Cailiao,2005,39(5),357(in Chinese).陈荣荣,何平显,牟济宁,等.耐火材料,2005,39(5),357.84 Chen S L, Sun J L, Xiong X Y, et al. Steelmaking,2008,24(6),53(in Chinese).陈松林,孙加林,熊小勇,等.炼钢,2008,24(6),53.85 Chen S J, Sun X. Energy for Metallurgical Industry,2006,25(1),36(in Chinese).陈树江,孙逊,王学达.冶金能源,2006,25(1),36.86 Huang F, Liu C, Maruoka N, et al. Ironmaking & Steelmaking,2015,42(7),553.87 Chen S L, Yuan L, Zeng D F, et al. Naihuo Cailiao,2010,44(5),341(in Chinese).陈松林,袁林,曾大凡,等.耐火材料,2010,44(5),341.88 Kai T, Isaji K, Torii K. Journal of the Technical Association of Refractories,2002,4(22),521.89 Toyoyasu O, Akiniro T, Isamu S. In:Proceedings of UNITCER 1999. Berlin,1999,pp.269.90 Shimizu K, Hokii T, Asano K.In: Proceedings of UNITECR 2003. Osaka,2003,pp.118.91 Ishii H, Kanatani S, Sasaki K, et al. In:Proceedings of UNITCER 2003.Osaka,2003,pp.114.92 Karakus M, Crites M D, Schlesinger M E. Journal of Microscopy,2010,200(1),50.93 Petkov V, Jones P T, Boydens E, et al. Journal of the European Ceramic Society,2007,27(6),2433.94 Chen Z Y. Naihuo Cailiao,2008,42(2),81(in Chinese).陈肇友.耐火材料,2008,42(2),81.95 Haldar M K, Tripathi H S, Das S K, et al. Ceramics International,2004,30(6),911.96 Xu L L, Zhai Y J, Liu X J, et al. Naihuo Cailiao,2016,50(6),461(in Chinese).徐琳琳,翟耀杰,刘锡俊,等.耐火材料,2016,50(6),461.97 Zhao H Z, Li H, Wei J X, et al. Naihuo Cailiao,2003,37(5),256(in Chinese).赵惠忠,李红,魏建修,等.耐火材料,2003,37(5),256.98 Wang B Y, Yu R H, Shi S H, et al. Naihuo Cailiao,2008,42(4),279(in Chinese).王宝玉,于仁红,师素环,等.耐火材料,2008,42(4),279.99 Deng Y Y, Wang H Z, Zhao H Z, et al. Naihuo Cailiao,2005,39(6),401(in Chinese).邓勇跃,汪厚植,赵惠忠.耐火材料,2005,39(6),401.100 Li M Z, Xu B S. Metallurgy technology of cupper, Chemical Industry Press, China,2012(in Chinese).李明照,许并社.铜冶炼工艺,化学工业出版社,2012.
[1] 毕玉保, 王慧芳, 赵万国, 梁峰, 张海军. 含碳浇注料用鳞片石墨的表面改性技术综述*[J]. 《材料导报》期刊社, 2017, 31(15): 108-114.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed