Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5195-5198    https://doi.org/10.11896/cldb.19090091
  高分子与聚合物基复合材料 |
横晶层对天然纤维增强聚合物复合材料力学性能影响的研究进展
栾玉, 任丹, 徐丹
西南大学食品科学学院,重庆 400715
Research Progress on Effect of Transcrystallinity on Mechanical Properties of Natural Fiber Reinforced Polymer Composites
LUAN Yu, REN Dan, XU Dan
College of Food Science, Southwest University, Chongqing 400715, China
下载:  全 文 ( PDF ) ( 2016KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 天然纤维增强聚合物复合材料被认为是21世纪最有发展前景的材料之一,其中天然纤维作为一种异相成核剂改变了聚合物基质的结晶方式,从而在界面形成横晶层(Transcrystallinity,TC)结构。晶体结构的改变会直接影响复合材料的界面性能及宏观力学性能。许多研究者对TC的生长机制以及TC对复合材料的性能影响进行了深入研究,力求通过结构分析和机理探究对提高天然纤维/热塑性高分子复合材料(Natural fiber/thermoplastic polymer composites,NFTPC)的力学性能提出建设性方案。但由于该结构较为特殊,作用机制较为复杂,目前研究者们对TC的形成机制以及对NFTPC力学性能影响的机理还存在许多分歧。因此,本文重点针对TC对NFTPC力学性能影响的研究进展进行归纳综述和简要分析,对该研究的前景提出展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
栾玉
任丹
徐丹
关键词:  横晶层  天然纤维  热塑性高分子材料    
Abstract: Natural fiber reinforced polymer composites are considered to be one of the most promising materials in the 21st century. As a heterogeneous nucleating agent, natural fibers change the crystallization mode of the polymer matrix and form a transcrystallinity (TC) at the interface. The change of crystal structure affects directly the interface properties and macro-mechanical properties of the composites. Many researchers have studied the growth mechanism of TC and the effect of TC on the properties of composites. They tried to put forward constructive proposals for improving the mechanical properties of natural fiber/thermoplastic polymer composites (NFTPC) through the analysis of TC structure and the exploration of theory. However, due to the particularity of structure and the complexity of mechanism, there are still many divergences on the growth mechanism of TC and the mechanism of its effect on the mechanical properties of NFTPC. The research progress of the effect of TC on mechanical properties of NFTPC was summarized and briefly analyzed, and the prospect of the research was putted forward in this paper.
Key words:  transcrystallinity    natural fiber    thermoplastic polymer composites
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TB332  
基金资助: 西南大学博士基金项目(SWU117060);中央高校基本科研业务费(XDJK2019D028)
通讯作者:  rendan7540481@163.com   
作者简介:  栾玉,西南大学食品科学学院硕士研究生。
任丹,西南大学食品科学学院,讲师。2012年6月本科毕业于北京林业大学材料科学与技术学院,2017年7月在中国林业科学研究院木材科学与技术专业取得博士学位。主要从事生物质材料的高值化利用以及果蔬贮藏保鲜的研究。
引用本文:    
栾玉, 任丹, 徐丹. 横晶层对天然纤维增强聚合物复合材料力学性能影响的研究进展[J]. 材料导报, 2021, 35(5): 5195-5198.
LUAN Yu, REN Dan, XU Dan. Research Progress on Effect of Transcrystallinity on Mechanical Properties of Natural Fiber Reinforced Polymer Composites. Materials Reports, 2021, 35(5): 5195-5198.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090091  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5195
1 Mochane M J, Mokhena T C, Mokhothu T H, et al. Express Polymer Letters,2019,13(2),159.
2 Sun Z. Science and Engineering of Composite Materials,2018,25(5),835.
3 Wang P, Tian Y, Wang G, et al. Colloid and Polymer Science,2015,293(9),2701.
4 Liu Y N. Effect of cooling modes and wood fiber size on mechanical and crystallization properties of WF/PLA (Polylactic acid) composites. Master’s Thesis, Chinese Academy of Forestry, China,2014.
刘一楠.冷却速率及纤维形态对木纤维/聚乳酸复合材料性能的影响.硕士学位论文,中国林业科学研究院,2014.
5 Sun W D, Liu B, Quan Y B, et al. Shanghai Plastics,2013(3),1.
孙伟东,陆波,权亚博,等.上海塑料,2013(3),1.
6 Ye J, Fang J, ZhanG L, et al. Polymer Composites,2018,39(10),3424.
7 Brodowsky H, Maeder E. Fibers,2018,6(1),16.
8 Zhou M, Xu S, Li Y, et al. Polymer,2014,55(13),3045.
9 Zhou M, Li Y, He C, et al. Composites Science and Technology,2014,(91),22.
10 Sun B, Qin Y, Xu Y, et al. Journal of Materials Science,2013,48(15),5354.
11 Raimo M. Materials Today Communications,2015,(3),137.
12 Liang Y Y, Xu J Z, Li Y, et al. ACS Sustainable Chemistry & Enginee-ring,2017,5(8),7128.
13 Zarges J C, Kaufhold C, Feldmann M, et al. Composites Part a-Applied Science and Manufacturing,2018,105,19.
14 Graupner N, Roessler J, Ziegmann G, et al. Composites Part a-Applied Science and Manufacturing,2014,63,133.
15 Folkes m J, Hardwick S T. Journal of Materials Science Letters,1987,6(6),656.
16 Campbell D, Qayyum M M. Journal of Materials Science,1977,12(12),2427.
17 Cheng F S, Kardos J L, Tolbert T L. Spe Journal,1970,26(8),62.
18 Ning N, Fu S, Zhang W, et al. Progress in Polymer Science,2012,37(10),1425.
19 Borysiak S. Journal of Applied Polymer Science,2013,127(2),1309.
20 Rolland H, Saintier N, Raphael I, et al. Composites Part B-Engineering,2018,(143),217.
21 Lan X, Bo S, Xin S, et al. Acs Sustainable Chemistry & Engineering,2017,5(4),3279.
22 Luo G, Li W, Liang W, et al. Composites Part B Engineering,2017,(111),190.
23 Abdou J P, Braggin G A, Luo Y, et al. ACS Applied Materials & Interfaces,2015,7(24),13620.
24 Felix J M, Gatenholm P. Journal of Materials Science,1994,29(11),3043.
25 Brady R L, Porter R S. Journal of Applied Polymer Science,1990,39(9),1873.
26 Chen E J H, Hsiao B S. Polymer Engineering and Science,1992,32(4),280.
27 Zafeiropoulos N E, Baillie C A, Matthews F L. Composites Part a-Applied Science and Manufacturing,2001,32(3-4),525.
28 Schmidt H. Polymer International,2014,63(4),646.
29 Wu C M, Chen M, Karger-Kocsis J. Polymer,2001,42(1),129.
30 Awal A, Cescutti G, Ghosh S B, et al. Composites Part a-Applied Science and Manufacturing,2011,42(1),50.
31 Mi Y L, Chen X Y, Guo Q P. Journal of Applied Polymer Science,1997,64(7),1267.
32 Lee H, Dellatore S M, Miller W M, et al. Science,2007,318(5849),426.
33 Haeshin L, Lee B P, Messersmith P B. Nature,2007,448(7151),338.
34 He L, Li X, Li W, et al. Carbohydrate Research,2012,348(348),95.
35 Pan H, Kong J, Chen Y, et al. International Journal of Biological Macromolecules,2019,(122),848.
36 Pan H, Cao Z, Chen Y, et al. International Journal of Biological Macromolecules,2019,(137),238.
37 Borysiak S, Grzabka-Zasadzinska A, Odalanowska M, et al. Cellulose,2018,25(8),4639.
38 Croitoru C, Varodi A M, Timar M C, et al. Journal of Materials Science,2018,53(6),4132.
39 Adhikary K B, Pang S, Staiger M P. Composites Part B-Engineering,2008,39(5),807.
40 Bialski A, Manley R S J, Schreiber H P. Polymer Engineering and Science,1977,17(7),456.
41 Son S J, Lee Y M, Im S S. Journal of Materials Science,2000,35(22),5767.
42 Garkhail S, Wieland B, George J, et al. Journal of Materials Science,2009,44(2),510.
43 Thomason J L, Rudeiros-Fernandez J L. Frontiers in Materials, DOI:10.3389/fmats.2018.00060.
44 Sinha A K, Narang H K, Bhattacharya S. Journal of Polymer Enginee-ring,2017,37(9),879.
45 Yuan Y. Synthetic Materials Aging and Application,2016,45(1),91.
袁毅.合成材料老化与应用,2016,45(1),91.
[1] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[2] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[3] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[4] 杨国坤, 蒋国盛, 刘天乐, 覃鑫, 余尹飞. 控温自修复微胶囊的制备及在水合物地层固井水泥浆中的应用[J]. 材料导报, 2021, 35(2): 2032-2038.
[5] 马甜, 贺鹏飞, 李文晓. 环氧/酸酐体系网络结构对形状记忆性能的影响[J]. 材料导报, 2021, 35(2): 2145-2150.
[6] 王森, 赖家美, 阮金琦, 胡根泉, 黄志超. 不同粒子改性环氧树脂基碳纤维复合材料低速冲击及冲击后压缩性能[J]. 材料导报, 2021, 35(2): 2178-2184.
[7] 曹成昊, 郭安然, 刘家臣, 张军军. 复合树脂/空心微珠耐高温浮力材料的制备及性能[J]. 材料导报, 2021, 35(2): 2185-2190.
[8] 冯振宇, 范保鑫, 王纳斯丹, 韩雪飞, 李翰, 吴敬涛. 基于UMATHT子程序的玻璃纤维/乙烯基酯热响应数值模拟[J]. 材料导报, 2021, 35(2): 2191-2198.
[9] 杨路, 赵秋莹, 申明霞, 裘进浩. 二氧化锰纤维/聚偏氟乙烯复合材料薄膜的制备及压电性能[J]. 材料导报, 2020, 34(24): 24145-24149.
[10] 王鸣, 黄俊涛, 程丽丽, 周律法, 任亚航, 王学雷. 锂离子电池负极用Li4Ti5O12@C复合材料的制备及电化学性能[J]. 材料导报, 2020, 34(Z2): 19-23.
[11] 付国燕, 王玮玮, 刘召波, 吕东, 姚心. 氢氧化物沉淀法制备层状结构氧化钪的研究[J]. 材料导报, 2020, 34(Z2): 164-167.
[12] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[13] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[14] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[15] 林欢, 李万利, 蔡利海, 刘文言. 剪切增稠纤维复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 549-554.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed