Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6001-6007    https://doi.org/10.11896/cldb.20040256
  无机非金属及其复合材料 |
Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳
伍书祺1, 黄泽皑1,2, 李晴川1, 饶志强1, 周莹1,2
1 西南石油大学新能源与材料学院,新能源材料及技术研究中心,成都 610500
2 油气藏地质及开发工程国家重点实验室,成都 610500
Construction of Type Ⅱ Heterojunction of Nb2O5/BiOCl for Enhanced Photocatalytic Carbon Dioxide Reduction
WU Shuqi1, HUANG Ze'ai1,2, LI Qingchuan1, RAO Zhiqiang1, ZHOU Ying1,2
1 The Center of New Energy Materials and Technology, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 7835KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作设计制备了Ⅱ型异质结Nb2O5/BiOCl复合材料并用于光催化还原二氧化碳。首先构建了两种比例异质结构(5%(质量分数,下同)和11%),通过透射电镜(TEM)发现两种材料结合存在界面,利用X射线光电子能谱(XPS)仪对材料的表面元素进行分析,随后进行价带位置测定,并根据UV-vis固体漫反射图谱推导材料禁带宽度,进而证实材料间形成了Ⅱ型异质结构。异质结构材料对可见光吸光能力有所增强,荧光光谱(PL)表明异质结构复合材料的光生电子和空穴分离能力得到了提高。光催化还原二氧化碳活性测试表明,5% Nb2O5加入能够有效提高材料光催化还原二氧化碳的活性,其中还原产物CO、CH4、H2的产率分别为单独BiOCl的1.3倍、2.8倍、1.9倍,分别是单独Nb2O5的2.7倍、2.0倍、1.1倍。最后结合价带位置、禁带宽度,提出了Nb2O5/BiOCl在光催化还原二氧化碳中的反应可能路径。本研究可为设计高效BiOCl基异质结构材料用于光催化还原二氧化碳提供新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
伍书祺
黄泽皑
李晴川
饶志强
周莹
关键词:  BiOCl  Nb2O5  Ⅱ型异质结  光催化  二氧化碳    
Abstract: In this work, a type Ⅱ heterojunction of Nb2O5/BiOCl composite material was prepared and applied to photocatalytic reduction of carbon dioxide (CO2). Different weight percentages (5wt% and 11wt%) of Nb2O5 was applied to fabricate different composition of type Ⅱ heterojunction of Nb2O5/BiOCl materials, the interface between the two materials was observed using transmission electron microscopy (TEM). The formation of type Ⅱ heterojunction was confirmed with the measurement of the position of the valence band using X-ray photoelectron spectroscopy (XPS), together with the width of the forbidden band derived from UV-vis diffuse reflection spectra. It was found that this type Ⅱ heterojunction material enhanced the visible light absorption range. The fluorescence spectrum (PL) showed that the ability of photogenerated electrons-hole separation efficiency was improved. As a result, the photocatalytic activities for the CO2 reduction indicated the activity of all the produced products was improved over type Ⅱ heterojunction of 5wt% Nb2O5/BiOCl. The yields of the products of CO, CH4, and H2 were 1.3 times, 2.8 times, and 1.9 times that of bare BiOCl; and 2.7 times, 2.0 times, 1.1 times that of bare Nb2O5, respectively. Finally, the possible reaction ways of CO2 over Nb2O5/BiOCl was proposed. This work might provide a new idea for the design of an efficient BiOCl-based heterostructure for photocatalytic CO2 reduction.
Key words:  BiOCl    Nb2O5    type Ⅱ heterojunction    photocatalyst    carbon dioxide
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TB332  
基金资助: 国家自然科学基金(U1862111);西南石油大学启航计划(2018QHZ020);四川省国际科技合作与交流研发项目(2019YFH0164);西南石油大学第十九期(2019—2020学年)大学生课外开放实验重点项目(KSZ19526)
通讯作者:  zeai.huang@swpu.edu.cn;yzhou@swpu.edu.cn   
作者简介:  伍书祺,西南石油大学,硕士研究生。2013年9月至2017年6月,在华东理工大学获得学士学位。2017年9月至今,在西南石油大学攻读硕士学位。
黄泽皑,讲师,硕士研究生导师。 2018年3月获日本京都大学工学博士学位,于2018年4月在日本国立先进工业科学技术研究院(AIST)进行博士后研究。 2018年9月入职西南石油大学,主要从事非常规天然气的高值利用研究。发表20余篇SCI论文,引用700多次,个人H指数为13。
周莹,西南石油大学教授,博士研究生导师。“长江学者奖励计划”青年学者、德国洪堡学者、日本JSPS邀请学者、四川省特聘专家、四川省有突出贡献的优秀专家、日本京都大学讲座教授。2004年毕业于中南大学无机非金属材料专业,2007年获中国科学院上海光学精密机械研究所材料学硕士学位,2010年获瑞士苏黎世大学(UZH)博士学位,之后获得苏黎世大学优秀青年基金资助从事博士后研究,并在洪堡基金会的资助下在德国卡尔斯鲁厄理工学院(KIT)从事研究工作。发表SCI论文120余篇,被SCI正面引用3 400多次,H指数为34。其研究团队主要从事的研究包括:太阳能化学转化;材料原位表征技术;油气资源利用相关催化材料等。
引用本文:    
伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
WU Shuqi, HUANG Ze'ai, LI Qingchuan, RAO Zhiqiang, ZHOU Ying. Construction of Type Ⅱ Heterojunction of Nb2O5/BiOCl for Enhanced Photocatalytic Carbon Dioxide Reduction. Materials Reports, 2021, 35(6): 6001-6007.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040256  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6001
1 Zvereva E, Kozlov M. Global Change Biology,2006,12(1),27.
2 Tontiwachwuthikul P, Chan C W, Kritpiphat W, et al. Energy Conversion and Management,1996,37(6-8),1129.
3 Oldenburg C, Stevens S, Benson S. Energy,2004,29(9-10),1413.
4 Murray C, Visintini L, Bidoglio G, et al. Energy Conversion and Management,1996,37(6-8),1067.
5 Bachu S. Energy Conversion and Management,2000,41(9),953.
6 Ye L, Deng Y, Wang L, et al. ChemSusChem,2019,12(16),3671.
7 Hoffmann M R, Martin S T, Choi W, et al. Chemical Reviews,1995,95(1),69.
8 Zhang R, Ma M, Zhang Q, et al. Applied Catalysis B: Environmental,2018,235,17.
9 Low J, Cheng B, Yu J. Applied Surface Science,2017,392,658.
10 Xing M, Zhou Y, Dong C, et al. Nano Letters,2018,18(6),3384.
11 Liu B J, Torimoto T, Yoneyama H. Journal of Photochemistry & Photo-biology A Chemistry,1998,113(1),93.
12 Bie C, Zhu B, Xu F, et al. Advance Materials,2019,31(42),1902868.
13 Niu P, Yang Y Q, Yu J C, et al. Chemical Communications,2014,50(74),10837.
14 Kazuhiko M, Daehyeon A, Ryo K, et al. Beilstein Journal of Organic Chemistry,2018,14,1806.
15 Huang Y, Fu M, He T. Acta Physico Chimica Sinica,2015,31(6),991.
16 Ma Z, Li P, Ye L, et al. Journal of Materials Chemistry A,2017,5(47),24995.
17 Li H, Li J, Ai Z, et al. Angewandte Chemie International Edition,2018,57(1),122.
18 Gao M, Yang J, Sun T, et al. Applied Catalysis B: Environmental,2019,243,734.
19 Jimmy C Y, Yu J, Ho W, et al. Chemical Communications,2001,19,1942.
20 Yu J, Jimmy C Y, Leung M K P, et al. Journal of Catalysis,2003,217(1),69.
21 Xie M, Fu X, Jing L, et al. Advanced Energy Materials,2014,4(5),130.
22 Cho S, Jang J W, Kim J, et al. Langmuir,2011,27(16),10243.
23 Ong W J, Putri L K, Tan L L, et al. Applied Catalysis B: Environmental,2016,180,530.
24 Shamaila S, Sajjad A K L, Chen F, et al. Journal of Colloid and Interface Science,2011,356(2),465.
25 Zhang W, Jia B, Zhong J, et al. Applied Surface Science,2018,430,571.
26 Pai Y H, Fang S Y. Journal of Power Sources,2013,230,321.
27 Hong Y, Li C, Zhang G, et al. Chemical Engineering Journal,2016,299,74.
28 Qu X, Liu M, Gao Z, et al. Applied Surface Science,2020,506,144688.
29 da Silva G T, Nogueira A E, Oliveira J A, et al. Applied Catalysis B: Environmental,2019,242,349.
30 Yu Y, Cao C, Liu H, et al. Journal of Materials Chemistry A,2014,2(6),1677.
31 Congjun W, Juan S, Rigui C, et al. Applied Surface Science,2020,519,146175.
32 Jin J, Wang Y, He T. RSC Advances,2015,5(121),100244.
33 Yu H J, Shi R, Zhao Y X, et al. Advanced Materials,2017,29,1605148.
[1] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[2] 孙延勇, 朱伟芳, 缑敏敏, 郭瑞丽. 埃洛石纳米管结构改性后用于Pebax基质中强化气体分离[J]. 材料导报, 2021, 35(6): 6174-6179.
[3] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[4] 李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
[5] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[6] 巩云, 王龙龙, 徐亚琪, 张传香. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(Z2): 37-40.
[7] 刘畅, 丁博, 杨贤峰, 叶瑞雪, 季益龙, 代兵, 吕辉鸿. 新型FeWO4@ZnS异质结微球制备及其光催化降解四环素和亚甲基蓝研究[J]. 材料导报, 2020, 34(Z2): 78-83.
[8] 赵可一, 曾和平. 镀铜空心玻璃微珠的光催化降解性能[J]. 材料导报, 2020, 34(Z2): 132-137.
[9] 胡向平, 李建新, 杨斌, 沈义梅, 徐光以, 许佩琪, 荣幸, 孟繁艳. Nb2O5原料对H-ZF类高折射率玻璃透过性能的影响因素[J]. 材料导报, 2020, 34(Z2): 138-141.
[10] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[11] 吴志昂, 郑晓平, 龚莉雯, 王璠, 杨子程, 张利, 包锦标. 发泡工艺及超临界二氧化碳诱导结晶作用对聚碳酸酯发泡行为的影响[J]. 材料导报, 2020, 34(8): 8200-8204.
[12] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[13] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[14] 张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[15] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed