Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3001-3016    https://doi.org/10.11896/cldb.19070279
  材料与可持续发展(三)—环境友好材料与环境修复材料 |
整体式光催化材料的制备及应用研究进展
张瑞阳1,2,李成金2,张艾丽2,周莹1,2,
1 西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
2 西南石油大学材料科学与工程学院新能源材料及技术研究中心,成都 610500
Research Progress on the Preparation and Application of Monolithic Photocatalysts
ZHANG Ruiyang1,2,LI Chengjin2,ZHANG Aili2,ZHOU Ying1,2,
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China
2 The Center of New Energy Materials and Technology,School of Materials Science and Engineering,Southwest Petroleum University,Chengdu 610500,China
下载:  全 文 ( PDF ) ( 44567KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着工业的快速发展以及人口增长对能源的巨大需求,化石燃料的过度消耗导致了严重的环境污染和能源危机,威胁人类未来的生存和发展。光催化技术(Photocatalysis)利用绿色的太阳能为能源,被认为是解决环境污染和能源危机最有前景的技术之一。在太阳光的照射下,光催化剂可以吸收光能并将其转化为化学能,用于污染物处理和清洁能源生产。因此,光催化技术的开发和应用受到了世界范围内的广泛关注。光催化技术的核心是光催化材料。在过去的几十年里,随着制备技术的发展以及对光催化技术理解的加深,光催化材料已经从最初的TiO2发展到各种金属氧化物、硫化物、氮化物以及金属单质、非金属和有机光催化材料,其应用也从液相的污染物去除、水分解发展到有机合成和各种气相光催化反应,包括NO氧化、CO2还原、CH4活化等。目前大部分研究集中在如何提高光催化活性,然而,由于光催化材料主要以粉末形式存在,其具有强烈的聚集倾向,在实际的应用过程中,只有表层的光催化材料可以吸收光能以及吸附污染物,大部分的光催化材料对活性没有贡献,导致光催化效率较低。另一方面,粉末的飞散不仅造成回收操作复杂,而且易引起二次污染。近年来,整体式光催化材料(Monolithic photocatalyst)受到了极大的关注,其具有丰富的孔结构和大的比表面积,有效提高了与污染物的接触面积以及对光能的利用率。此外,整体式光催化材料优异的宏观特性使其具有极高的可操作性和简单快捷的回收能力,避免了二次污染。随着制备技术的不断发展,整体式光催化材料已经从均相的整体式气凝胶光催化材料(Aerogel photocatalyst)发展到不同组成的整体式复合型光催化材料(Hybrid photocatalyst),同时,其应用也从简单的物理吸附扩展到光化学反应,包括环境修复以及清洁能源生产。本文总结了整体式光催化材料的制备策略,特别强调了整体式气凝胶光催化材料和复合型整体式光催化材料的典型合成路线及在液相污染物的去除、气相污染物的去除、水分解和光催化CO2转换方面应用的最新研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张瑞阳
李成金
张艾丽
周莹
关键词:  整体式光催化材料  光催化  环境修复  清洁能源生产    
Abstract: With the rapid development of industry and the increasing energy demand caused by population growth, the extensive utilization of fossil fuels results in serious environment pollution and energy crisis, which are threatening the survival and development of human society. Photocatalysis has been considered as one of the most potential techniques to solve the environment and energy problems owing to the use of green solar energy as source. Under solar light illumination, light energy can be converted to chemical energy over photocatalyst for environmental remediation and clean energy production. Therefore, photocatalysis has attracted great attention in the world wide.
The core of photocatalysis is photocatalyst. In the past decades, with the development of preparation technology and the in deep understanding of photocatalysis, the kinds of photocatalyst have been broadened from TiO2 to various kinds of metal oxide, sulfide, nitride and metallic element, nonmetal and organic photocatalyst. And its application has also spread from aqueous environmental remediation and water splitting to organic synthesis and various gas-phase reaction, including NO oxidization, CO2 reduction, CH4 activation and so on. Current reports focus on the photocatalytic activity. However, most of the reported photocatalysts are in powder form, which has strong tendency to agglomerate. In the practical application, only the surface of photocatalyst powder can adsorb pollutant and absorb light, and most photocatalyst has no contribution to photocatalysis, thus resulting in low photocatalytic activity. On the other hand, photocatalyst powder will scatter to everywhere and inevitably get lost under gas or water flow, increasing the difficulty of recovery operation and leading to serious secondary pollution.
Recently, monolithic photocatalyst has attracted great attention. Monolithic photocatalysts usually possesses abundant porous structure and large surface area, which can increase the contact area of pollutant and the utilization of light energy. Moreover, their monolithic properties significantly improve the operability and simplify the recovery process. With the development of preparation technology, the types of monolithic photoca-talysts have broadened from homogeneous aerogel photocatalysts to monolithic hybrid photocatalysts. Meanwhile, their application has also spread from physical adsorption to photocatalytic reaction, including environmental remediation and clean energy production.
In this review, we summarize the preparation strategies and applications of monolithic photocatalysts. In particular, we highlight recent developments for the construction of aerogel photocatalyst and grafting photocatalyst to monolithic substrates, as well as update applications on the removal of aqueous pollutants, gas pollution remediation, water splitting and photocatalysis CO2 conversion.
Key words:  monolithic photocatalyst    photocatalysis    environmental remediation    clean energy production
                    发布日期:  2020-01-03
ZTFLH:  TB34  
基金资助: 四川省国际科技合作与交流研发项目(2017HH0030);四川省青年科技创新研究团队专项计划(2016TD0011);成都市国际合作项目(2017-GH02-00014-HZ);四川省大学生创新创业训练计划(201810615048)
通讯作者:  yzhou@swpu.edu.cn   
作者简介:  张瑞阳,2012年6月毕业于河南理工大学,获得工学学士学位;2017年6月毕业于西南石油大学,获得工学硕士学位。现为西南石油大学博士研究生,在周莹教授的指导下进行研究。目前主要研究领域为二维整体式光催化材料的制备及在环境净化和清洁能源生产中的应用;周莹,2004年在中南大学获得无机非金属材料学士学位,2007年于中国科学院上海光学精密机械研究所获得材料学硕士学位,2010年在瑞士苏黎世大学(UZH)获得材料化学博士学位。长期从事油气资源清洁利用与污染治理材料研究,受聘为日本京都大学讲座教授,入选德国洪堡学者、英国皇家化学会“Top 1% 高被引中国作者”榜单、四川省“百人计划”特聘专家、四川省有突出贡献的优秀专家等;近5年主持各类科研项目15项,包括国家自然科学基金3项,在Nature Commun., ACS Catal.等期刊发表SCI论文119篇,被SCI引用3000余次,11篇论文入选ESI高被引论文,H指数为30;担任石油和化工行业天然气开发及利用新材料重点实验室主任、国家能源新材料技术研发中心理事、四川省科技青年联合会常务理事,Chinese Chemical Letter、Recent Innovations in Chemical Engineering等期刊编委或青年编委,《催化学报》、Frontiers in Materials、Journal of Nanomaterials等期刊专刊特邀编辑等。
引用本文:    
张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
ZHANG Ruiyang,LI Chengjin,ZHANG Aili,ZHOU Ying. Research Progress on the Preparation and Application of Monolithic Photocatalysts. Materials Reports, 2020, 34(3): 3001-3016.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070279  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3001
1 Wang W, Tadé M O, Shao Z. Chemical Society Reviews, 2015, 44(15), 5371.
2 Lashof D A, Ahuja D R. Nature, 1990, 344(6266), 529.
3 Karl T R, Trenberth K E. Science, 2003, 302(5651), 1719.
4 Fujishima A, Honda K. Nature, 1972, 238(5358), 37.
5 Masih D, Ma Y, Rohani S. Applied Catalysis B: Environmental, 2017, 206, 556.
6 Kudo A, Miseki Y. Chemical Society Reviews, 2009, 38(1), 253.
7 Konstantinou I K, Albanis T A. Applied Catalysis B: Environmental, 2004, 49(1), 1.
8 Tian J, Zhao Z, Kumar A, et al. Chemical Society Reviews, 2014, 43(20), 6920.
9 Zhang J, Yu J, Jaroniec M, et al. Nano Letters, 2012, 12(9), 4584.
10 Iwashina K, Iwase A, Ng Y H, et al. Journal of the American Chemical Society, 2015, 137(2), 604.
11 Ran J, Wang H, Jin H, et al. Journal of Materials Chemistry A, 2018, 6(46), 23278.
12 Yoshida M, Yamakata A, Takanabe K, et al. Journal of the American Chemical Society, 2009, 131(37), 13218.
13 Dong F, Xiong T, Sun Y, et al. Chemical Communications, 2014, 50(72), 10386.
14 Zhang Q, Zhou Y, Wang F, et al. Journal of Materials Chemistry A, 2014, 2(29), 11065.
15 Ong W J, Tan L L, Ng Y H, et al. Chemical Reviews, 2016, 116(12), 7159.
16 Fu J, Yu J, Jiang C, et al. Advanced Energy Materials, 2018, 8(3), 1701503.
17 Fu Y, Sun D, Chen Y, et al. Angewandte Chemie International Edition, 2012, 51(14), 3364.
18 Wang H, Yuan X, Wu Y, et al. Applied Catalysis B: Environmental, 2015, 174, 445.
19 Moniz S J, Shevlin S A, Martin D J, et al. Energy & Environmental Science, 2015, 8(3), 731.
20 Ismail A A, Bahnemann D W. Solar Energy Materials and Solar Cells, 2014, 128, 85.
21 Chong M N, Jin B, Chow C W, et al. Water Research, 2010, 44(10), 2997.
22 Gaya U I, Abdullah A H. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, 9(1), 1.
23 Tamaki Y, Morimoto T, Koike K, et al. Proceedings of the National Academy of Sciences, 2012, 109(39), 15673.
24 Yuliati L, Yoshida H. Chemical Society Reviews, 2008, 37(8), 1592.
25 Hou W, Cronin S B. Advanced Functional Materials, 2013, 23(13), 1612.
26 Li X, Yu J, Wageh S, et al. Small, 2016, 12(48), 6640.
27 Jing L, Qu Y C, Wang B, et al. Solar Energy Materials and Solar Cells, 2006, 90(12), 1773.
28 Tong H, Ouyang S, Bi Y, et al. Advanced Materials, 2012, 24(2), 229.
29 Zhang R, Ma M, Zhang Q, et al. Applied Catalysis B: Environmental, 2018, 235, 17.
30 Zhang R, Wan W, Li D, et al. Chinese Journal of Catalysis, 2017, 38(2), 313.
31 Wan W, Zhang R, Ma M, et al. Journal of Materials Chemistry A, 2018, 6(3), 754.
32 Ziegler C, Wolf A, Liu W, et al. Angewandte Chemie International Edition, 2017, 56(43), 13200.
33 Lu K Q, Xin X, Zhang N, et al. Journal of Materials Chemistry A, 2018, 6(11), 4590.
34 Zhang R, Huang Z, Li C, et al. Applied Surface Science, 2019, 475, 953.
35 Wan W, Yu S, Dong F, et al. Journal of Materials Chemistry A, 2016, 4(20), 7823.
36 Cheng W, Rechberger F, Niederberger M. Nanoscale, 2016, 8(29), 14074.
37 Rechberger F, Niederberger M. Nanoscale Horizons, 2017, 2(1), 6.
38 Štengl V, Bakardjieva S, Šubrt J, et al. Microporous and Mesoporous Materials, 2006, 91(1-3), 1.
39 Howells A R, Fox M A. The Journal of Physical Chemistry A, 2003, 107(18), 3300.
40 Lin C C, Wei T Y, Lee K T, et al. Journal of Materials Chemistry, 2011, 21(34), 12668.
41 Kolen'Ko Y V, Garshev A, Churagulov B, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172(1), 19.
42 Behnajady M, Eskandarloo H, Modirshahla N, et al. Desalination, 2011, 278(1-3), 10.
43 Parayil S K, Psota R J, Koodali R T. International Journal of Hydrogen Energy, 2013, 38(25), 10215.
44 Wu J, Lue X, Zhang L, et al. European Journal of Inorganic Chemistry, 2009, 2009(19), 2789.
45 Horiuchi T, Chen L, Osaki T, et al. Catalysis Letters, 2001, 72(1-2), 77.
46 Courthéoux L, Popa F, Gautron E, et al. Journal of Non-Crystalline Solids, 2004, 350, 113.
47 Osaki T, Horiuchi T, Sugiyama T, et al. Journal of Non-Crystalline Solids, 1998, 225, 111.
48 Li H, He P, Wang Y, et al. Journal of Materials Chemistry, 2011, 21(29), 10999.
49 Balakhonov S, Vatsadze S, Churagulov B. Russian Journal of Inorganic Chemistry, 2015, 60(1), 9.
50 Xiao K, Wu G, Shen J, et al. Materials Chemistry and Physics, 2006, 100(1), 26.
51 Sui R, Rizkalla A S, Charpentier P A. Langmuir, 2006, 22(9), 4390.
52 Cao Y, Hu J C, Hong Z S, et al. Catalysis Letters, 2002, 81(1-2), 107.
53 Richards R M, Volodin A M, Bedilo A F, et al. Physical Chemistry Chemical Physics, 2003, 5(19), 4299.
54 Jeevanandam P, Klabunde K. Langmuir, 2002, 18(13), 5309.
55 Skapin T. Journal of Non-Crystalline Solids, 2001, 285(1-3), 128.
56 Kalebaila K K, Georgiev D G, Brock S L. Journal of Non-Crystalline Solids, 2006, 352(3), 232.
57 Bag S, Trikalitis P N, Chupas P J, et al. Science, 2007, 317(5837), 490.
58 Brock S L, Arachchige I U, Kalebaila K K. Comments on Inorganic Chemistry, 2006, 27(5-6), 103.
59 Bag S, Arachchige I U, Kanatzidis M G. Journal of Materials Chemistry, 2008, 18(31), 3628.
60 Dunleavy M, Allen G C, Paul M. Advanced Materials, 1992, 4(6), 424.
61 Stanić V, Etsell T H, Pierre A C, et al. Materials Letters, 1997, 31(1-2), 35.
62 Stanić V, Pierre A C, Etsell T H, et al. Journal of Non-Crystalline So-lids, 1997, 220(1), 58.
63 Stanić V, Pierre A C, Etsell T H, et al. Journal of Materials Research, 1996, 11(2), 363.
64 Stanić V, Pierre A C, Etsell T H, et al. Journal of the American Ceramic Society, 2000, 83(7), 1790.
65 Gash A E, Tillotson T M, Satcher Jr J H, et al.Chemistry of Materials, 2001, 13(3), 999.
66 Gash A E, Satcher J H, Simpson R L.Chemistry of Materials, 2003, 15(17), 3268.
67 Long J W, Logan M S, Rhodes C P, et al. Journal of the American Che-mical Society, 2004, 126(51), 16879.
68 Kido Y, Nakanishi K, Miyasaka A, et al. Chemistry of Materials, 2012, 24(11), 2071.
69 Wei T Y, Chen C H, Chien H C, et al. Advanced Materials, 2010, 22(3), 347.
70 Baumann T F, Kucheyev S O, Gash A E, et al. Advanced Materials, 2005, 17(12), 1546.
71 Du A, Zhou B, Shen J, et al. Journal of Non-Crystalline Solids, 2009, 355(3), 175.
72 Du A, Zhou B, Shen J, et al. New Journal of Chemistry, 2011, 35(5), 1096.
73 Du A, Zhou B, Zhong Y, et al. Journal of Sol-Gel Science and Technology, 2011, 58(1), 225.
74 Bi Y T, Ren H B, Chen B W, et al. Advanced Materials Research, 2011,335,368.
75 Sánchez-Paradinas S, Dorfs D, Friebe S, et al. Advanced Materials, 2015, 27(40), 6152.
76 Bag S, Gaudette A F, Bussell M E, et al. Nature Chemistry, 2009, 1(3), 217.
77 Bag S, Kanatzidis M G. Journal of the American Chemical Society, 2010, 132(42), 14951.
78 Subrahmanyam K S, Malliakas C D, Sarma D, et al. Journal of the Ame-rican Chemical Society, 2015, 137(43), 13943.
79 Arachchige I U, Brock S L. Journal of the American Chemical Society, 2006, 128(24), 7964.
80 Mohanan J L, Arachchige I U, Brock S L. Science, 2005, 307(5708), 397.
81 Arachchige I U, Brock S L. Journal of the American Chemical Society, 2007, 129(7), 1840.
82 Arachchige I U, Brock S L. Accounts of Chemical Research, 2007, 40(9), 801.
83 Gaponik N, Wolf A, Marx R, et al. Advanced Materials, 2008, 20(22), 4257.
84 Lesnyak V, Voitekhovich S V, Gaponik P N, et al. ACS Nano, 2010, 4(7), 4090.
85 Chen H, Lesnyak V, Bigall N C, et al. Chemistry of Materials, 2010, 22(7), 2309.
86 Lesnyak V, Wolf A, Dubavik A, et al. Journal of the American Chemical Society, 2011, 133(34), 13413.
87 Singh A, Lindquist B A, Ong G K, et al. Angewandte Chemie International Edition, 2015, 54(49), 14840.
88 Sayevich V, Cai B, Benad A, et al. Angewandte Chemie International Edition, 2016, 55(21), 6334.
89 Rechberger F, Heiligtag F J, Süess M J, et al. Angewandte Chemie International Edition, 2014, 53(26), 6823.
90 Deshmukh R, Tervoort E, Käch J, et al. Dalton Transactions, 2016, 45(29), 11616.
91 Long Y, Hui J, Wang P, et al. Chemical Communications, 2012, 48(47), 5925.
92 Chen S, Liu G, Yadegari H, et al. Journal of Materials Chemistry A, 2015, 3(6), 2559.
93 Liu Z, Xu K, She P, et al. Chemical Science, 2016, 7(3), 1926.
94 Lei W, Mochalin V N, Liu D, et al. Nature Communications, 2015, 6, 8849.
95 Ou H, Yang P, Lin L, et al.Angewandte Chemie International Edition, 2017, 56(36), 10905.
96 Jung S M, Jung H Y, Dresselhaus M S, et al. Scientific Reports, 2012, 2, 849.
97 Kailasam K, Epping J D, Thomas A, et al. Energy & Environmental Science, 2011, 4(11), 4668.
98 Jung S M, Jung H Y, Fang W, et al. Nano Letters, 2014, 14(4), 1810.
99 Okada K, Asakura G, Tokudome Y, et al. Chemistry of Materials, 2015, 27(5), 1885.
100 Rousseas M, Goldstein A P, Mickelson W, et al. ACS Nano, 2013, 7(10), 8540.
101 Pham T, Goldstein A P, Lewicki J P, et al. Nanoscale, 2015, 7(23), 10449.
102 Xu X, Zhang Q, Hao M, et al. Science, 2019, 363(6428), 723.
103 Han Q, Wang B, Zhao Y, et al. Angewandte Chemie International Edition, 2015, 54(39), 11433.
104 Zu G, Shen J, Wang W, et al. ACS Applied Materials & Interfaces, 2015, 7(9), 5400.
105 Xu W, Du A, Tang J, et al. RSC Advances, 2014, 4(90), 49541.
106 Weerasinghe M N P, Klabunde K J.Journal of Photochemistry and Photobiology A: Chemistry, 2013, 254, 62.
107 Yao M, Liu M, Gan L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433, 132.
108 Wang R, Li G, Dong Y, et al.Analytical Chemistry, 2013, 85(17), 8065.
109 Zu G, Shen J, Wang W, et al. Chemistry of Materials, 2014, 26(19), 5761.
110 Zhu C, Han T Y J, Duoss E B, et al. Nature Communications, 2015, 6, 6962.
111 Hu H, Zhao Z, Wan W, et al. Advanced Materials, 2013, 25(15), 2219.
112 Lin Y, Liu F, Casano G, et al. Advanced Materials, 2016, 28(36), 7993.
113 Han W, Ren L, Gong L, et al.ACS Sustainable Chemistry & Enginee-ring, 2014, 2(4), 741.
114 Zhou Y, Zhang X, Zhang Q, et al. Journal of Materials Chemistry A, 2014, 2(39), 16623.
115 Xiang Q, Yu J, Jaroniec M.Chemical Society Reviews, 2012, 41(2), 782.
116 Zeng G, Shi N, Hess M, et al. ACS Nano, 2015, 9(4), 4227.
117 Tong Z, Yang D, Shi J, et al. ACS Applied Materials & Interfaces, 2015, 7(46), 25693.
118 Gong Y, Yang S, Zhan L, et al. Advanced Functional Materials, 2014, 24(1), 125.
119 Vinod S, Tiwary C S, da Silva Autreto P A, et al. Nature Communications, 2014, 5, 4541.
120 Chen Q, Zhao Y, Huang X, et al. Journal of Materials Chemistry A, 2015, 3(13), 6761.
121 Huang G, Liu H, Wang S, et al. Journal of Materials Chemistry A, 2015, 3(47), 24128.
122 Han S, Jiang J, Huang Y, et al. Physical Chemistry Chemical Physics, 2015, 17(3), 1580.
123 Yao X, Guo G, Ma X, et al. ACS Applied Materials & Interfaces, 2015, 7(47), 26085.
124 Chen M, Wang H, Li L, et al. ACS Applied Materials & Interfaces, 2014, 6(16), 14327.
125 Chen L, Wei B, Zhang X, et al. Small, 2013, 9(13), 2331.
126 Xiao L, Wu D, Han S, et al. ACS Applied Materials & Interfaces, 2013, 5(9), 3764.
127 Li L, He S, Liu M, et al.Analytical Chemistry, 2015, 87(3), 1638.
128 Liu W, Cai J, Ding Z, et al. Applied Catalysis B: Environmental, 2015, 174, 421.
129 Yang J, Chen D, Zhu Y, et al. Applied Catalysis B: Environmental, 2017, 205, 228.
130 Qiu B, Xing M, Zhang J. Journal of the American Chemical Society, 2014, 136(16), 5852.
131 Vaiano V, Sacco O, Sannino D, et al. Journal of Chemical Technology & Biotechnology, 2014, 89(8), 1175.
132 Zhang R, Wan W, Qiu L, et al. Materials Letters, 2016, 181, 321.
133 Zhang R, Wan W, Qiu L, et al. Applied Surface Science, 2017, 419, 342.
134 Jiang W, Liu Y, Wang J, et al. Advanced Materials Interfaces, 2016, 3(3), 1500502.
135 Yang Y, Zhang Q, Zhang R, et al. Frontiers in Chemistry, 2018, 6, 156.
136 Liang Q, Li Z, Yu X, et al. Advanced Materials, 2015, 27(31), 4634.
137 Kim H, Lee S, Han Y, et al. Journal of Materials Science, 2006, 41(18), 6150.
138 Qiu S, Xu S, Ma F, et al. Powder Technology, 2011, 210(2), 83.
139 Plesch G, Vargová M, Vogt U, et al. Materials Research Bulletin, 2012, 47(7), 1680.
140 Vargová M, Plesch G, Vogt U F, et al. Applied Surface Science, 2011, 257(10), 4678.
141 Plesch G, Gorbár M, Vogt U F, et al.Materials Letters, 2009, 63(3-4), 461.
142 Kouamé A N, Masson R, Robert D, et al. Catalysis Today, 2013, 209, 13.
143 Dong F, Wang Z, Li Y, et al.Environmental Science & Technology, 2014, 48(17), 10345.
144 Yang G, Xu C, Li H.Chemical Communications, 2008, 48, 6537.
145 Gao Y, Chen S, Cao D, et al. Journal of Power Sources, 2010, 195(6), 1757.
146 Tang C, Cheng N, Pu Z, et al. Angewandte Chemie International Edition, 2015, 54(32), 9351.
147 Guan C, Liu J, Cheng C, et al. Energy & Environmental Science, 2011, 4(11), 4496.
148 You B, Jiang N, Sheng M, et al. ACS Catalysis, 2015, 6(2), 714.
149 Kong W, Lu C, Zhang W, et al. Journal of Materials Chemistry A, 2015, 3(23), 12452.
150 Xiong X, Ding D, Chen D, et al. Nano Energy, 2015, 11, 154.
151 Wei Y, Wang Y, Wei L, et al. International Journal of Hydrogen Energy, 2018, 43(2), 592.
152 Xiao C, Li Y, Lu X, et al. Advanced Functional Mate-rials, 2016, 26(20), 3515.
153 Xu R, Wu R, Shi Y, et al. Nano Energy, 2016, 24, 103.
154 Heiligtag F J, Cheng W, de Mendoncça V R, et al. Chemistry of Mate-rials, 2014, 26(19), 5576.
155 Wu T, Chen M, Zhang L, et al. Journal of Materials Chemistry A, 2013, 1(26), 7612.
156 Liu J, Wang X, Shi F, et al. Advanced Powder Technology, 2016, 27(4), 1781.
157 Wan W, Lin Y, Prakash A, et al. Journal of Materials Chemistry A, 2016, 4(48), 18687.
158 Andjelkovic I, Tran D N, Kabiri S, et al. ACS Applied Materials & Interfaces, 2015, 7(18), 9758.
159 Dubey S P, Dwivedi A D, Kim I C, et al. Chemical Engineering Journal, 2014, 244, 160.
160 Wan C, Li J. ACS Sustainable Chemistry & Engineering, 2015, 3(9), 2142.
161 Cheng W, Rechberger F, Niederberger M.ACS Nano, 2016, 10(2), 2467.
162 Xiong Y, Dang B, Wang C, et al. ACS Applied Materials & Interfaces, 2017, 9(24), 20554.
163 Liu Y, Liu X, Zhao Y, et al. Applied Catalysis B: Environmental, 2017, 213, 74.
164 Cui C, Li S, Qiu Y, et al. Applied Catalysis B: Environmental, 2017, 200, 666.
165 Tang L, Jia C, Xue Y, et al. Applied Catalysis B: Environmental, 2017, 219, 241.
166 Nawaz M, Miran W, Jang J, et al. Applied Catalysis B: Environmental, 2017, 203, 85.
167 Yang M, Zhang N, Wang Y, et al. Journal of Catalysis, 2017, 346, 21.
168 Fan Y, Ma W, Han D, et al. Advanced Materials, 2015, 27(25), 3767.
169 Atkinson R. Atmospheric Environmental, 2000, 34(12-14), 2063.
170 Correa S M. Combustion Science and Technology, 1993, 87(1-6), 329.
171 Yang L, Liu Y, Zhang R, et al. Chinese Journal of Catalysis, 2018, 39(4), 646.
172 Ni M, Leung M K, Leung D Y, et al. Renewable and Sustainable Energy Reviews, 2007, 11(3), 401.
173 Walter M G, Warren E L, McKone J R, et al. Chemical Reviews, 2010, 110(11), 6446.
174 Hisatomi T, Kubota J, Domen K. Chemical Society Reviews, 2014, 43(22), 7520.
175 Puskelova J, Baia L, Vulpoi A, et al. Chemical Engineering Journal, 2014, 242, 96.
176 Lin Z, Li J, Zheng Z, et al. Advanced Energy Materials, 2016, 6(15), 1600510.
177 Hou Y, Wen Z, Cui S, et al. Nano Letters, 2016, 16(4), 2268.
178 Ma J, Sun N, Zhang X, et al. Catalysis Today, 2009, 148(3-4), 221.
179 Ong W J, Tan L L, Chai S P, et al. Nano Energy, 2015, 13, 757.
180 Low J, Cheng B, Yu J.Applied Surface Science, 2017, 392, 658.
181 Pan B, Luo S, Su W, et al. Applied Catalysis B: Environmental, 2015, 168, 458.
182 Rechberger F, Niederberger M. Materials Horizons, 2017, 4(6), 1115.
[1] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[2] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[3] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[4] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[5] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[6] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[7] 刘畅, 张志宾, 王有群, 钟玮鸿, 刘云海. 基于g-C3N4异质结复合材料光催化降解污染物的研究进展[J]. 材料导报, 2019, 33(Z2): 104-112.
[8] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[9] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[10] 梁辰, 吴艳青, 王大伟, 王晗, 刘乐乐, 赵丕琪. 纳米TiO2光催化水泥基材料的研究进展[J]. 材料导报, 2019, 33(Z2): 267-272.
[11] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[12] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[13] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[14] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[15] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed