Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3056-3068    https://doi.org/10.11896/cldb.19030064
  材料与可持续发展(三)—环境友好材料与环境修复材料 |
单原子光催化剂的合成、表征及在环境与能源领域的应用
李惠惠1,张圆正1,代云容2,于艳新1,殷立峰1,
1 北京师范大学环境学院,环境模拟与污染控制国家重点实验室,北京 100875
2 中国地质大学(北京)水资源与环境学院,北京 100083
Single Atom Photocatalysts: Synthesis, Characterization and Applications in the Fields of Environment and Energy
LI Huihui1,ZHANG Yuanzheng1,DAI Yunrong2,YU Yanxin1,YIN Lifeng1,
1 State Key Laboratory of Environmental Simulation and Pollution Control,School of Environment,Beijing Normal University,Beijing 100875,China
2 School of Water Resources and Environment,China University of Geosciences,Beijing 100083,China
下载:  全 文 ( PDF ) ( 18541KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 绿色清洁的光催化技术可降解污染物、生产能源,是解决环境与能源问题的重要手段,但限于光催化材料成本及效率方面,难以实现大规模应用。近年来单原子光催化剂的诞生和发展为这一领域注入了新的活力,其合成、表征及应用的相关研究成为材料、化学、环境、能源等诸多领域的热点。与传统负载型光催化剂相比,单原子光催化剂表面的金属粒子的分散度达到原子尺寸,可呈现更高的催化活性和选择性,但对合成策略、表征技术和应用途径提出了更高的挑战:合成方面的主要障碍在于金属单原子的高表面能导致合成过程中的失稳团聚而丧失其单原子形态;传统的表征技术也缺乏对单原子形貌、结构及化学环境的解析能力;目前对单原子光催化剂的应用研究多为传统研究领域的延伸,未能充分利用单原子的功能特性。这些问题成为制约其发展的关键,也是该领域的研究热点。国内外学者在单原子光催化材料合成、表征和应用领域做出了巨大努力,并取得了丰硕成果:(1)合成方面,针对单原子表面能高、易团聚的问题,改进了液相合成法、原子层沉积法等传统合成策略,引进了新的高温裂解、火焰喷雾、静电自组装等技术;(2)表征方面,先进的原子尺度分析技术如球差校正高分辨透射电镜(HAADF-STEM)、 X射线吸收精细结构谱(XAFs)等以及密度泛函理论(DFT)的发展则有助于深入理解孤立金属单原子形态及化学结构;(3)单原子光催化剂目前已被成功应用于光解水制氢、光催化CO2还原、环境污染物降解以及合成氨等领域,获得了长足的发展。上述成果推进了光催化材料及催化理论的研究向原子级别深入,使其进一步贴近实用化。本文综述了近年来单原子光催化剂的合成方法、表征技术以及在环境和能源领域的应用情况。同时,总结了目前单原子光催化材料研究中存在的问题。最后,展望了单原子光催化剂未来的发展趋势,以期为单原子光催化剂的理论研究及应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李惠惠
张圆正
代云容
于艳新
殷立峰
关键词:  单原子  光催化剂  环境  污染物降解  能源    
Abstract: The green and clean photocatalytic process can degrade pollutants and produce energy, which is an important means to solve environment and energy problems. However, it is difficult to realize large-scale application due to the cost and efficiency of photocatalytic materials. In recent years, the emergence and development of single atom photocatalyst have injected new vitality into this field, and the research on its synthesis, characte-rization and application has become a hotspot in many fields such as materials, chemistry, environment and energy.
Compared with traditional supported catalyst, the metal particle dispersion on the surface of the single atom photocatalyst is atomic. Single atom photocatalyst can present a higher catalytic activity and selectivity, but there are still many challenges remaining in synthesis strategy, characte-rization and application way: main obstacle in the synthesis process lies in that high surface energy can lead to the instability of single atom. Traditional characterization techniques also lack the ability to analyze the morphology, structure and chemical environment of the single atom. At pre-sent, the research on the application of single atom photocatalyst is mostly an extension of the traditional research field. These problems become the key shackle of its development, but also the focus of the research in this field.
Oversea and domestic researchers have made a great effort in the synthesis, characterization and application of single atom photocatalytic materials and achieved a lot of great results: (ⅰ) in terms of synthesis, to solve the reunite problem of single atom, researches have improved the traditional synthesis strategy, such as liquid-phase synthesis, atomic layer deposition etc. And advanced synthesis methods such as pyrolysis, flame spray pyrolysis and electrostatic self-assembly have been introduced. (ⅱ) In terms of characterization, the development of advanced ato-mic scale analysis techniques such as spherical aberration correction high resolution transmission electron microscopy (HAADF-STEM), X-ray absorption fine structure spectrum (XAFs), and density functional theory (DFT) can contribute to the in-depth understanding of the morphology and chemical structure of isolated metal atom. (ⅲ) Single atom photocatalyst has been successfully applied in the fields of photohydrolysis of water for hydrogen evolution, photocatalytic reduction of CO2, degradation of environmental pollutants and synthesis of ammonia, etc. The above achievements promote the research of photocatalytic materials and catalytic theory to the atomic level and make it more practical.
In this paper, synthesis methods, characterization techniques and applications of single atom photocatalysts in the field of environment and energy are reviewed. At the same time, the existing problems in the research of single atom photocatalytic materials are summarized. At last, to provide reference for the theoretical research and application of single atom photocatalyst, the future development trend of single atom photocatalyst is prospected.
Key words:  single atom    photocatalyst    environment    pollutants degradation    energy
                    发布日期:  2020-01-03
ZTFLH:  O643.36  
  O649.4  
基金资助: 国家自然科学基金项目(21777009);北京市自然科学基金(8182031)
通讯作者:  lfyin@bnu.edu.cn   
作者简介:  李惠惠,2018年6月毕业于北京工业大学,获得理学学士学位。现为北京师范大学环境学院硕士研究生,在殷立峰副教授的指导下进行研究。目前的主要研究领域为单原子光催化还原污染物制氢;殷立峰,北京师范大学环境学院副教授,博士研究生导师。2000年毕业于大连理工大学,获学士学位;2011年毕业于北京师范大学,获博士学位。曾作为访问学者赴美国麻省大学及加州理工大学从事研究工作。累计发表学术论文60余篇,其中SCI收录30余篇,获得2017年国家技术发明奖二等奖一项,2012/2016教育部科研成果奖一等奖两项,2014年中质协优秀成果奖,申请国家专利65项,已获授权47项。
引用本文:    
李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
LI Huihui,ZHANG Yuanzheng,DAI Yunrong,YU Yanxin,YIN Lifeng. Single Atom Photocatalysts: Synthesis, Characterization and Applications in the Fields of Environment and Energy. Materials Reports, 2020, 34(3): 3056-3068.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030064  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3056
1 Fujishima A, Honda K.Nature, 1972, 238(5358), 37.
2 Strizhak P E.Theoretical & Experimental Chemistry, 2013, 49(1), 2.
3 Qiao B T, Wang A Q, Yang X F, et al.Nature Chemistry, 2011, 3(8), 634.
4 Yang X F, Wang A Q, Qiao B T, et al. Accounts of Chemical Research, 2013, 46(8), 1740.
5 Flytzani-stephanopoulos M, Gates B C.Annual Review of Chemical & Biomolecular Engineering, 2012, 3(1), 545.
6 Koparde V N, Cummings P T.American Chemical Society Nano, 2008, 2(8), 1620.
7 Zeng J S, Wang R B, He L. New Chemical Materials, 2018, 46(3), 27 (in Chinese).
曾杰生, 王瑞彬, 何蕾. 化工新型材料, 2018, 46(3), 27.
8 Wu J H, Huang Y, Ye W, et al. Advanced Science, 2017, 4(11), 1700194.
9 Xie L L, Dai Y R, Zhou Y J, et al.Chemical Physics Letters, 2018, 693, 1.
10 Niu P, Zhang L L, Liu G, et al.Advanced Functional Materials, 2012, 22, 4763.
11 Zhang L Z, Jia Y, Gao G P, et al. Chem, 2018, 4(2), 285.
12 Shen L J, Liang R W, Wu L. Chinese Journal of Catalysis, 2015, 36(12), 2071.
13 Li B, Wen H M, Cui Y J, et al. Advanced Materials, 2016, 28(40), 8819.
14 Zhang Y Z, Xie L L, Zhou Y J, et al. Progress in Chemistry, 2016, 28(10), 1528(in Chinese).
张圆正, 谢利利, 周怡静, 等.化学进展, 2016, 28(10), 1528.
15 Kown K C, Suh J M, Varma R S, et al. Small Methods, DOI:org/10.1002/smtd.201800492.
16 Chen S S, Cao X, Chen C H, et al. Journal of Functional Materials, 2018, 49(7), 7039(in Chinese).
陈顺生, 曹鑫, 陈春卉, 等.功能材料, 2018, 49(7), 7039.
17 Ye S H, Luo F Y, Zhang Q L, et al.Energy & Environmental Science, 2019, 12, 1000.
18 Li N X, Liu M, Yang B, et al. Journal of Physical Chemistry C, 2017, 121(5), 2923.
19 Leong K H, Gan B L, Ibrahim S, et al.Applied Surface Science, 2014, 319(1), 128.
20 Wang Y, Zhang W H, Deng D H, et al. Chinese Journal of Catalysis, 2017, 38(9), 1443.
21 Deng T, Zheng W T, Zhang W. Chinese Journal of Catalysis, 2017, 38, 1489.
22 Zhang H B, Wei J, Dong J C, et al.Angewandte Chemie International Edition in English, 2016, 55(46), 14310.
23 Qiu H J, Ito Y, Cong W T, et al. Angewandte Chemie International Edition, 2015, 54(47), 14031.
24 Trofimovaite R, Parlett C M A, Kumar S, et al.Applied Catalysis B: Environmental, 2018, 232, 501.
25 Ling C Y, Niu X H, Li Q, et al. Journal of the American Chemical Society, 2018, 140, 14161.
26 Han B, Lang R, Qiao B T, et al. Chinese Journal of Catalysis, 2017, 38(9), 1498.
27 Liu J, Bunes B R, Zang L, et al.Environmental Chemistry Letters, 2017, 16(2), 477.
28 Long R, Li Y, Liu Y, et al.Journal of American Chemical Society, 2017, 139, 4486.
29 Zhao Q, Yao W F, Huang C P, et al. ACS Applied Materials & Interfaces, 2017, 9, 42734.
30 Li X G, Bi W T, Zhang L, et al.Advanced Materials, 2016, 28(12), 2427.
31 Huang P C, Liu W, He Z H, et al.Science China Chemistry, 2018, 61(9), 1187.
32 Ou M, Wan S P, Zhong Q, et al.Hydrogen Energy, 2017, 42, 27043.
33 Liu J Y.ACS Catalysis, 2016, 7(1), 34.
34 Cao Y J, Chen S, Luo Q Q, et al. Angewandte Chemie International Edition, 2017, 56, 12191.
35 Xing J, Chen J F, Li Y H, et al.Chemistry, 2014, 20(8), 2138.
36 Yi L H, Lan F J, Li J E, et al. ACS Sustainable Chemistry & Enginee-ring, 2018, 6(10), 12766.
37 Wu G H, Huang H, Rong J F, et al. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(4), 639 (in Chinese).
吴耿煌, 黄凰, 荣峻峰, 等. 石油学报(石油加工), 2018, 34(4), 639.
38 An S F, Zhang G H, Wang T W, et al. ACS Nano, 2018, 12(9), 9441.
39 Thybo S, Jensen S, Johansen J, et al.Journal of Catalysis, 2004, 223(2), 271.
40 Strobel R, Alfons A, Pratsinis S E.Advanced Powder Technology, 2006, 17(5), 457.
41 Fujiwara K, Pratsinis S E. AIChE Journal, 2017, 63(1), 139.
42 Teoh W Y, Amal R, Madler L. Nanoscale, 2010, 2(8), 1324.
43 Huang S D, Hao X K, Zhang R X, et al. Chinese Rare Earths, 2017, 38(6), 125(in Chinese).
黄绍东, 郝先库, 张瑞祥, 等. 稀土, 2017, 38(6), 125.
44 Wu X, Zhang H B, Dong J C, et al.Nano Energy, 2018, 45, 109.
45 Cao S W, Low J X, Yu J G, et al.Advanced Materials, 2015, 27(13), 2150.
46 Wang F L, Wang Y F, Feng Y P, et al.Applied Catalysis B: Environmental, 2018, 221, 510.
47 Wang F L, Wang Y F, Li Y Y, et al.Dalton Transactions, 2018, 47, 6924.
48 Leong K H, Gan B L, Ibrahim S, et al.Applied Surface Science, 2014, 319, 128.
49 Gao C, Chen S M, Wang Y, et al.Advanced Materials, 2018, 30(13), 1704624.
50 Huang D H,de Vera G A, Chu C, et al. ACS Catalysis, 2018, 8(10), 9353.
51 Du X L, Wang X L, Li Y H, et al.Chemical Communication, 2017, 53(68), 9402.
52 Fang X Z, Shang Q C, Wang Y, et al.Advanced Materials, 2018, 30(7), 1705112.
53 Neubert S, Mitoraj D, Shevlin S A, et al.Journal of Materials Chemistry A, 2016, 4(8), 3127.
54 Xue Y, Lei Y G, Liu X Y, et al.New Journal of Chemistry, 2018, 42(17), 14083.
55 Niu J F, Yin L F, Dai Y R, et al.Applied Catalysis A: General, 2016, 521, 90.
56 Wang Y Q, Liang W S. Experimental Technology and Management, 2010, 27(3), 25 (in Chinese).
王乙潜, 梁文双.实验技术与管理, 2010, 27(3), 25.
57 Chen Y X, Huang Z W, Ma Z, et al.Catalysis Science & Technology, 2017, 7(19), 4250.
58 Yang X C, Liu W X, Dubiel M, et al. Journal of Functional Materials, 2005,36(8), 1146 (in Chinese).
杨修春, 刘维学, Dubiel M, 等. 功能材料, 2005,36(8), 1146.
59 Gao G P, Jiao Y, Eric R, et al. Journal of the American Chemical Society, 2016, 138, 6292.
60 Wang B, Cui H R, Shen S H. Small Methods, DOI: 10.1002/smtd.201800447.
61 Li Y R, Wang Z W, Xia T, et al.Advanced Materials, 2016, 28(32), 6959.
[1] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[2] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[3] 张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[4] 易鹏,吴国娟,段文焱,吴敏,潘波. 生物炭的改性和老化及环境效应的研究进展[J]. 材料导报, 2020, 34(3): 3037-3043.
[5] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[6] 杜传超, 贾斐, 梁辰, 何观平, 刘晓光. 骨肉瘤的缺氧微环境与放疗增敏进展[J]. 材料导报, 2019, 33(Z2): 97-103.
[7] 张治财, 齐福刚, 赵镍, 欧阳晓平, 马金华. 海洋防污涂料/层技术研究现状及发展趋势[J]. 材料导报, 2019, 33(Z2): 116-120.
[8] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[9] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[10] 郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
[11] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[12] 彭敏, 赵晓明. 纤维类吸声材料的研究进展[J]. 材料导报, 2019, 33(21): 3669-3677.
[13] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[14] 苏新, 王振生, 彭真, 郭建亭. 不同环境气氛中NiAl-2.5Ta-7.5Cr-1B-5Co-2.5Re合金的摩擦磨损特性[J]. 材料导报, 2019, 33(2): 288-292.
[15] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed