Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3669-3677    https://doi.org/10.11896/cldb.18100102
  高分子与聚合物基复合材料 |
纤维类吸声材料的研究进展
彭敏, 赵晓明
天津工业大学纺织学院,天津300387
Advances in the Fiber-based Sound-absorbing Materials
PENG Min, ZHAO Xiaoming
School of Textile, Tianjin Polytechnic University, Tianjin 300387
下载:  全 文 ( PDF ) ( 6208KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维材料以其在中高频段良好的吸声效果而被广泛应用于减震降噪领域,特别在航天航空、建筑、汽车等领域受到了国内外学者们的高度关注。其优异的吸声性能得益于材料内部大量的微孔和缝隙,当声波进入材料时,纤维与空气之间的摩擦以及纤维自身的振动等作用将使声能转化为热能而耗散。
    传统的纤维材料虽然具有良好的吸声效果,但仍存在以下问题:(1)纤维材料对低频段声波的吸收效果并不理想,对低频噪音防护效果差;(2)具有较好吸声效果的纤维材料通常较厚且易变形,使用范围大大受限;(3)传统纤维材料的强力较低、化学稳定性较差且使用寿命较短,更新和维护成本高。
    随着新材料和新技术的不断开发和完善,对纤维材料的研究已不再局限于使用单一材料及传统的改变结构的方式,而是利用新材料和新技术,着力于开发出吸声性能优异、综合性能良好且厚度适宜的新型材料。目前,国内外学者对纤维吸声材料的研究主要集中于:(1)天然纤维复合材料及废弃纤维吸声材料的研究与开发;(2)将传统纤维材料与纳米纤维层复合以改善其在低频段的吸收效率;(3)纤维材料组织结构变化对吸声性能影响的研究及理论模型的建立。
    本文简要介绍了纤维类吸声材料的吸声机理、常见的吸声理论模型,重点阐述了纤维类吸声材料的国内外研究进展,归纳了常见材料的测试方法及影响材料吸声性能的相关因素,最后讨论和分析了纤维吸声材料的性能优化及结构设计。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭敏
赵晓明
关键词:  多孔介质  环境  纤维类吸声材料  模型  吸声性能    
Abstract: Fiber materials are widely used for noise reduction, especially in the field of aerospace, architecture, automotive, etc. Due to their excellent sound absorption effect in the middle and high frequency bands, which have attracted global attention. Its superior sound absorption properties are attributed to a large number of micropores and gaps inside the material. When sound waves go through the material, the friction between the fibers and air as well as the vibration of the fibers itself, will dissipate the sound energy by converting it into heat energy.
    Traditional fiber materials exhibit favorable sound absorption effect, while nevertheless suffering some deficiencies: Ⅰ. the absorbance of fiber materials in low-frequency sound wave bands is unsatisfactory, hence leading to the poor protection effect to low-frequency noise. Ⅱ. The fiber materials with good sound absorption effect are usually thicker and prone to deformation, which severely limits their wide application. Ⅲ. The traditional fiber materials are inferior in strength, chemical stability and service life, and in consequence, costly in terms of renewal and maintenance.
    With continuous attempts, the scheme for developing of fiber materials is no longer limited to using a single material in isolation or traditionally changing materials structure, but is focused on integrative design and construction of new materials which possess simultaneously excellent sound absorption properties, fine comprehensive performance and suitable thickness. At present, the research on fiber-absorbing materials are mainly concentrated on: Ⅰ. research and development of natural fiber composite materials and waste fiber sound absorbing materials; Ⅱ. compounding traditional fiber materials with nanofiber layers to improve their low-frequency sound absorption effect; Ⅲ. the study on the influence of fiber structure changes on the sound absorption performance and the establishment of relevant theoretical models.
    This paper provides a brief introduction over the sound absorption principle and the common sound absorption theoretical models of fiber-based sound-absorbing materials. It focuses on the research progress of fiber-based sound-absorbing materials, and summarizes the common test methods and the related factors affecting sound-absorbing materials. Moreover, it also gives a critical discussion on the performance optimization and structural design of fiber-based sound-absorbing.
Key words:  porous media    environment    fiber-based sound-absorbing materials    model    sound absorption performance
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  TB53  
基金资助: 国家自然科学基金 (51206122)
作者简介:  彭敏,2015年6月毕业于天津工业大学,获得工学学士学位。现为天津工业大学纺织学院博士研究生,在赵晓明教授的指导下进行研究。目前主要研究领域为多层梯度吸声复合材料的设计及其性能。
    赵晓明,天津工业大学纺织学院教授、博士研究生导师。英国赫瑞-瓦特大学博士,天津市千人计划专家,中国产业用纺织品行业协会特种纺织品分会秘书长。主要从事柔性防护材料性能方面的研究,近5年在国内外重要期刊发表文章100多篇,申报发明专利20余项。
引用本文:    
彭敏, 赵晓明. 纤维类吸声材料的研究进展[J]. 材料导报, 2019, 33(21): 3669-3677.
PENG Min, ZHAO Xiaoming. Advances in the Fiber-based Sound-absorbing Materials. Materials Reports, 2019, 33(21): 3669-3677.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100102  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3669
1 Kumar A, Kumar P, Mishra R K, et al. Environmental Pollution, 2018, 77, 77.
2 Gupta A, Gupta A, Jain K, et al. Indian Journal of Pediatrics, 2018, 85, 300.
3 Wang S S. A study on sound absorption properties of needled nonwoven composites. Master's Thesis, Suzhou University, China, 2014 (in Chinese).
王双闪. 针刺非织造材料基复合吸声体吸声性能研究. 硕士学位论文, 苏州大学, 2014.
4 Zhang L. Analysis of the influence of floor decoration materials on indoor environment.Master's Thesis, Zhejiang University of Technology, China, 2011 (in Chinese).
张黎. 楼地面装饰材料对室内环境的影响分析. 硕士学位论文, 浙江工业大学, 2011.
5 Zhang X P. Main parameters of hearing impairment caused by impulse noise.Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2013 (in Chinese).
张雪萍. 脉冲噪声引起听力损伤的主要参数研究. 硕士学位论文, 南京航空航天大学, 2013.
6 Birgitta B, Thomas L, Dietrich H S. Guidelines for community noise, World Health Organization, Geneva, 1999.
7 Auger N, Duplaix M, Bilodeau-Bertrand M, et al. Environmental Pollution, 2018, 239, 599.
8 Tobias A, Recio A, Diaz J, et al.European Journal of Preventive Cardio-logy, 2013, 22(4), 496.
9 Basner M, Brink M, Bristow A,et al. Noise Health, 2015, 17 (75), 57.
10 Lekaviciute J, Argalasova-Sobotova L. Noise Health, 2013, 15(62), 42.
11 Pierrette M, Marquis-Favre C, Morel C J, et al.Journal of Environmental Psychology, 2012, 32(2), 178.
12 Xiao S S. Contrastive research and engineering application of highway traffic noise prediction methods. Master's Thesis, Chang'an University, China, 2014 (in Chinese).
肖沙沙. 高速公路交通噪声预测方法对比研究与工程应用. 硕士学位论文, 长安大学, 2014.
13 Peng L M, Song B Q, Wang J F, et al. Advances in Materials Science and Engineering, 2015, 4, 1.
14 Jorge P A, Malcolm J C. Journal of Sound & Vibration, 2010, 44, 12.
15 Yang S, Weidong Y, Pan N.Textile Research Journal, 2011, 81, 673.
16 Zhang X H, Qu Z G, He X C, et al. Aip Advances, 2016, 6(10), 2059.
17 Margaritis E, Kang J. Ecological Indicators, 2017, 72, 921.
18 Campello-Vicente H, Peral-Orts R, Campillo-Davo N, et al.Applied Acoustics, 2017, 116, 59.
19 Ma D Y.Noise and vibration control engineering handbook, Mechanical Industry Press, China, 2002 (in Chinese).
马大猷.噪声与振动控制工程手册, 机械工业出版社, 2002.
20 Zhou H, Li B, Huang G S.Materials Letters, 2006, 60(29), 3451.
21 Xiang Haifan, Zhao Ning, Xu Jian. Polymer Bulletin, 2011(5), 1 (in Chinese).
向海帆, 赵宁, 徐坚.高分子通报, 2011(5), 1.
22 Kim B S, Cho S J, Min D K,et al. Composite Structures, 2016, 145, 242.
23 Toyoda M, Sakagami K, Okano M, et al.Applied Acoustics, 2017, 116, 311.
24 Zhou X X, Yu X G. Dynamic design of noise control and structural equipment, Metallurgical Industry Press, China, 2014 (in Chinese).
周新祥, 于晓光. 噪声控制与结构设备的动态设计,冶金工业出版社, 2014.
25 Dunne R, Desai D, Sadiku R. Acoustics Australia, 2017, 45,453.
26 Muehleisen R T, Beamer C W, Tinianov B D.The Journal of the Acoustical Society of America, 2005, 117(2), 536.
27 Wang X, Eisenbrey J, Zeitz M, et al.Journal of Sound and Vibration, 2004, 273(4), 1109.
28 Delany M E, Bazley E N. Applied Acoustics, 1970, 3(2), 105.
29 Biot M A. The Journal of the Acoustical Society of America, 1956, 28(2), 168.
30 Miki Y. Journal of the Acoustical Society of Japan (E), 1990, 11(1), 19.
31 Miki Y.Journal of the Acoustical Society of Japan (E), 1990, 11(1), 25.
32 Takeshi K. Acoustical Science and Technology, 2008, 29(2), 121.
33 Garai M, Pompoli F.Applied Acoustics, 2005, 66(12), 1383.
34 Shen Y. Study on sound absorption characteristics of activated carbon fiber materials. Ph.D. Thesis, Jiangnan University, China, 2015 (in Chinese).
沈岳. 活性炭纤维材料吸声特性研究. 博士学位论文, 江南大学,2015.
35 Morse P M, Ingard K U. Theoretical acoustics, Mc Graw-Hill, New York, 1968.
36 Allard J F. Propagation of sound in porous media, Elsevier Applied Science, London, 1993.
37 Lambert R F. The Journal of the Acoustical Society of America, 1982, 72(3), 879.
38 Luo S D. Research on the acoustic absorption characteristic of EMRF based on Biot theory. Master's Thesis, Huazhong University of Science and Technology, China, 2015 (in Chinese).
罗善德. 基于Biot理论的电磁流变液吸声特性研究. 硕士学位论文,华中科技大学, 2015.
39 Shi Lei. Study on the sound absorption property for muili-layer composite nonwovens and the prediction by using neutral network model. Master's Thesis, Suzhou University, China, 2013 (in Chinese).
史磊. 多层复合非织造材料吸声性能及其神经网络预测模型研究. 硕士学位论文, 苏州大学, 2013.
40 Zhang W C, Zhou S H, Jiang A L. Polymer Materials Science & Enginee-ring, 2012, 28 (2), 157 (in Chinese).
张文成, 周穗华, 蒋安林. 高分子材料科学与工程, 2012, 28 (2), 157.
41 Zhang W C, Zhou S H, Zhai Y. Journal of Southwest Jiaotong University, 2012, 47 (4), 698 (in Chinese).
张文成, 周穗华, 瞿洋. 西南交通大学学报, 2012, 47 (4), 698.
42 Liu X T, Hong J, Yan X, et al. Journal of Textile Research, 2015, 36 (3), 15 (in Chinese).
刘雪亭, 洪杰, 晏雄, 等. 纺织学报, 2015, 36 (3), 15.
43 Tascan M, Vaughn E A.Journal of Engineered Fabrics & Fibers, 2008, 3(2), 32.
44 Tascan M , Vaughn E A.Textile Research Journal, 2008, 78(4), 289.
45 Berardi U, Iannace G.Building & Environment, 2015, 94(2), 840.
46 Patnaik A, Mvubu M, Muniyasamy S, et al.Energy and Buildings, 2015, 92, 161.
47 Hanna Y I, Kandil M M. Applied Acoustics, 1991, 34 (4), 281.
48 Shoshani Y, Rosenhouse G.Applied Acoustics, 1992, 35 (2), 129.
49 Na Y, Cho G.Fibers and Polymers, 2010, 11 (5), 782.
50 Yi E, Cho G, Na Y, et al. Textile Research Journal, 2002, 72 (7), 638.
51 Sagartzazu X, Hervella L, Pagalday J M. Textile Research Journal, 2010, 96, 317.
52 Hwang Y J, An J S, McCord M G, et al. Fibers and Polymers, 2003, 4 (4), 145.
53 Kalebek N A. Fibers & Textiles in Eastern Europe, 2016, 24(1), 107.
54 Putra A, Or K H, Selamat M Z, et al. Applied Acoustics, 2018, 136, 9.
55 Bansod P V, Mittal T, Mohanty A R. Journal of Low Frequency Noise, Vibration and Active Control, 2016, 44, 457.
56 Ganesan P, Karthik T.Journal of the Textile Institute, 2016, 107 (4), 477.
57 Ersoy S, Kucuk H.Applied Acoustics, 2009, 70, 215.
58 Patnaik A, Mvubu M, Muniyasamy S, et al.Energy and Buildings, 2015, 92, 161.
59 Tiuc A E, Vermeşan H, Gabor T, et al.Energy Procedia, 2016, 85, 559.
60 Hao A, Zhao H, Chen J Y.Composites Part B Engineering, 2013, 54 (1), 44.
61 Jayamani E, Hamdan S, Bin Bakri M K, et al.Journal of Reinforced Plastics and Composites, 2016, 35(9), 703.
62 Bansod P V, Mittal T, Mohanty A R.Journal of Low Frequency Noise, Vibration and Active Control, 2017, 36, 376.
63 Rabbi A, Bahrambeygi H, Nasouri K, et al.Advances in Polymer Techno-logy, 2014, 33, 1.
64 Mazrouei-Sebdani Z, Khoddami A, Hadadzade H, et al. RSC Advances, 2015, 5, 12830.
65 Gao B, Zuo L, Zuo B. Fibers & Polymers, 2016, 17 (7), 1090.
66 Bahrambeygi H, Sabetzadeh N, Rabbi A. et al. Journal of Polymer Research, 2013, 20 (2), 72.
67 Kucukali Ozturk M, Kalinova K, Nergis B, et al.Textile Research Journal, 2013, 83, 2204.
68 Wu C M, Chou M H.European Polymer Journal, 2016, 82, 35.
69 Chen Y, Jiang N.Textile Research Journal, 2013, 77, 785.
70 Honarvar M G, Jeddi A A A, Tehran M A.Textile Research Journal, 2010, 80 (14), 1392.
71 Soltani P, Zerrebini M. Textile Research Journal, 2012 , 82 (9), 875.
72 Chen W H, Chen T N, Xin F X, et al.Materials and Design, 2016, 105, 386.
73 Berardi U, Iannace G. Applied Acoustics, 2017, 115, 131.
74 Hu F X, Du Z F, Zhao M M, et al. Journal of Textile Research, 2013, 34(12),45 (in Chinese).
胡凤霞, 杜兆芳, 赵淼淼, 等.纺织学报, 2013, 34(12), 45.
75 Liu X T, Yan X, Zhang H P. Textile Research Journal, 2016, 86 (7), 739.
76 Putra A, Or K H, Selamat M Z, et al. Applied Acoustics, 2018, 136, 9.
77 He L, Zhu H C, Qiu X J, et al.Acoustic Theory and Engineering Applications, Science Press, China, 2006 (in Chinese).
何琳, 朱海潮, 邱小军, 等. 声学理论与工程应用, 科学出版社, 2006.
78 Tascan M E, Vaughn E A.Textile Research Journal, 2008, 78, 289.
79 Gao H W.Noise control technology, Wuhan University of Technology Press, China, 2009(in Chinese).
高红武. 噪声控制技术, 武汉理工大学出版社, 2009.
80 Yang S. Study of structural characteristics and acoustic properties of fiber assembiy. Ph.D. Thesis, Donghua University, China, 2011 (in Chinese).
杨树. 纤维集合体的结构特征及其吸声性能研究. 博士学位论文, 东华大学, 2011.
81 Zhao S L.Noise reduction and isolation (Volume 1), Tongji University Press, China, 1985(in Chinese).
赵松龄. 噪声的降低与隔离(上册), 同济大学出版社, 1985.
82 Kino N, Ueno T. Applied Acoustics, 2008, 69 (7), 575.
83 Soltani P, Azimian M, Wiegmann A, et al.Journal of Sound & Vibration, 2018, 426, 1.
84 Lv C L. Study on the preparation of porous sound-absorbing materials by recycling waste silicon rubber cracking slag. Master's Thesis, Jiangsu University, China, 2011 (in Chinese).
吕春丽. 废硅橡胶裂解渣再生利用制备多孔吸声材料的研究. 硕士学位论文, 江苏大学, 2011.
85 Zhang J, Chen W H, Ren S W, et al. Journal of Xi'an Jiaotong University, 2018, 52(1), 143 (in Chinese).
张俊, 陈卫华, 任树伟, 等.西安交通大学学报, 2018,52 (1),143.
86 Luan Q L, Qiu H, Cheng G. Journal of Textile Research, 2017, 38 (3), 67 (in Chinese).
栾巧丽, 邱华, 成钢. 纺织学报, 2017 , 38 (3), 67.
87 Na Y, Agnhage T, Cho G. Fibers and Polymers, 2012, 13 (10), 1348.
88 Lin W L. Study of the acoustic properties measurements for sound-absor-bing materials in the free-field. Ph.D. Thesis, Hefei University of Technology, China, 2017 (in Chinese).
林汪林. 材料吸声性能的自由场测量方法研究. 博士学位论文, 合肥工业大学, 2017.
[1] 陈坤, 李君, 曲大为, 卢强. 基于LCA评价模型的动力电池回收阶段环境性研究[J]. 材料导报, 2019, 33(z1): 53-56.
[2] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[3] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[4] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[5] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[6] 郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
[7] 赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
[8] 吴光亮, 武尚文, 张永集, 孟征兵. 氮合金化HRB500E钢筋连铸传热过程模拟及配水工艺优化[J]. 材料导报, 2019, 33(5): 731-738.
[9] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[10] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[11] 田响宇, 尚心莲, 李红霞, 王新福, 刘国齐, 杨文刚, 于建宾. 在内衬材料中添加氢氧化铝提升长水口的抗热震性:内衬材料显微组织与性能及长水口颈部最大热应力数学模型[J]. 材料导报, 2019, 33(4): 611-616.
[12] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[13] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[14] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[15] 屈伟, 范同祥. 金属/陶瓷润湿性的实验表征和理论预测研究进展[J]. 材料导报, 2019, 33(21): 3606-3612.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed