Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3606-3612    https://doi.org/10.11896/cldb.18120005
  无机非金属及其复合材料 |
金属/陶瓷润湿性的实验表征和理论预测研究进展
屈伟, 范同祥
上海交通大学金属基复合材料国家重点实验室,上海 200240
Advances in the Wettability Research of Metal/Ceramic Systems:Experimental Characterization and Theoretical Estimation
QU Wei, FAN Tongxiang
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 5279KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属/陶瓷体系的润湿性研究在金属与陶瓷的连接、金属液的熔炼和提纯、浸渗法和液相法制备复合材料等领域都有着重要意义。金属熔体在陶瓷表面的润湿过程中,会出现基板在熔体中溶解、界面吸附和互相反应等,是一种较为复杂的物理化学现象。有关金属/陶瓷润湿性的实验和理论研究一直是国际上材料学领域的热点之一。
    目前金属/陶瓷润湿性主要通过测量接触角θ(借助Young's方程计算)来得出,润湿性表征方法存在较大局限性,特别是接触角对实验条件高度敏感,其往往难以准确反映润湿性,以及适用于高熔点合金与陶瓷体系的方法较为缺乏。因此,除对接触角测试方法进行改进外,很多研究者也试图通过理论计算来考察润湿性,但至今尚未发展出能够很好地应用于所有金属/陶瓷体系的理论预测模型。
    润湿性实验表征方法的近期研究主要集中在改良座滴法、滴定法、毛细上升法和感应熔化法等。其中,改良座滴法相比传统座滴法能够消除熔体表面氧化膜的影响。感应熔化法可以使高熔点合金(如Ti合金等)熔化,具有独特优势(相比之下其他几种方法只适用于Al系、Mg系等低熔点合金与陶瓷的体系)。在理论预测模型方面,除直接基于Young's方程,根据表面张力模型来研究润湿性外,也有学者尝试结合Young-Dupré方程,从热力学和原子键的角度揭示反应界面润湿性的内在规律。同时,将润湿视为一种反应现象,对界面反应吉布斯自由能变化和润湿过程中表面相的能量变化加以考虑,也形成了一种新的定性衡量润湿性的标准。此外,研究者还在润湿铺展动力学方面取得了一些重要成果,包括直接根据金属形核理论来计算润湿角,以及利用如流体动力学模型、分子动力学模型、反应控制模型和扩散控制模型等来预测金属/陶瓷体系的润湿速率。
    本文主要从润湿过程的机制、接触角的测试方法和用以预测润湿性的理论模型三个方面,综述了金属/陶瓷润湿性领域的实验和理论研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
屈伟
范同祥
关键词:  润湿  金属/陶瓷界面  接触角  理论模型  毛细上升法  感应熔化法  表面张力模型  润湿铺展动力学    
Abstract: Wettability of metal/ceramic systems is of crucial significance in many fields including metal-ceramic jointing, purification of molten metal, infiltration-based preparation and liquid-phase preparation of composite materials. The wetting of liquid metal on ceramic surface, according to its process, is a complicated physical and chemical phenomenon involving substrate dissolution, interface adsorption and interaction. Experimental characterization and theoretical estimation of wettability of metal/ceramic systems has always been a research hotspot in materials science.
    At present, the characterization methods for wettability of metal/ceramic are almost all based on measuring contact angle (calculated via the classical equation given by Thomas Young). The contact angle is highly susceptible to circumstance factors, so the relationship between contact angle and wettability has inevitable deviation in practical estimation. Moreover, few methods are adaptable for the systems of high-melting-point alloys and ceramics. Therefore, in addition to improve and optimize measurement of contact angle, considerable attempts have also been made to study wettability via theoretical calculation. However, yet no theoretical prediction can be applied to all metal/ceramic systems till now, due to controversial understanding upon wetting mechanism and insufficient research.
    Recent experimental research of metal/ceramic wettability is mainly focused onimproved sessile drop method, dispensed drop method, capillary rising method and induction melting method. Among them, the improved sessile drop method, compared to the traditional sessile drop method, can eliminate the impact of oxide film on the melt surface. Induction melting method can realize the melting of high-melting-point alloys (e.g. Ti alloy), so it has a unique superiority (as the rest of the methods mentioned above are adaptable to systems comprised of low-melting-point alloys, e.g. Al alloys or Mg alloys, and ceramics). In terms of theoretical estimation, besides the surface tension model which directly based on Young's equation, some researchers incorporate Young-Dupré equation to reveal the inherent law of reaction interface wettability from the perspectives of thermodynamics and atomic bond. This provides an alternative idea for theoretical studies though the final results are less-than-ideal. In addition, a new criterion for qualitatively analysing wettability has been proposed by researchers as well, in which wetting is regarded as a reaction phenome-non, and the change of Gibbs free energy of interface reaction and the energy change of surface phase in wetting process are taken into account. Moreover, with respect to wetting spreading dynamics, aside from directly calculating contact angle using metal nucleation theory, there have also been developed some theoretical models that deserve attention, such as hydrodynamic model, molecular dynamics model, reaction control model and diffusion control model, and can be adopted to study wetting rate.
    This reviewprovides a comprehensive description of the recent research progress, both experimental and theoretical, upon the wettability of metal/ceramic, with mechanism of wetting process, measurement of contact angle and models for estimating wettability as the major sections.
Key words:  wettability    metal/ceramic interface    contact angle    theoretical model    capillary rising method    induction melting method    surface tension model    wetting spreading kinetics
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  TG148  
基金资助: 国家重点研发计划专项课题(2017YFB0703101)
作者简介:  屈伟,2016年7月毕业于哈尔滨工业大学,获得工学学士学位。现为上海交通大学金属基复合材料国家重点实验室研究生,在范同祥教授的指导下进行项目研究。目前主要从事金属与陶瓷的界面润湿性领域的研究工作。
    范同祥,上海交通大学材料学院教授、博士研究生导师。1999年获上海交通大学和日本大阪大学联合培养博士学位,2000—2001年在日本科学技术厅进行博士后研究工作。作为主要人员近年来主持或承担国家杰出青年基金项目、教育部新世纪优秀人才计划、霍英东基金优选资助课题、上海市基础研究重点项目和重大项目、上海市科委纳米专项等研究。兼任中国材料研究学会青年委员会理事、中国有色金属学会材料科学与工程委员会委员和多种国内外期刊审稿人。主要从事特种功能金属基复合材料和生物启迪功能材料工作。近年来,代表性论文发表在Prog. Mater. Sci.、Adv. Mater. 、Adv. Funct. Mater. 、J. Mater. Chem.、Chem. Mater.、Acta Mater.、J. Am. Ceram. Soc.、J. Eur. Ceram. Soc.、Carbon、Micropor. Mesopor. Mat.、Nanotechnology、Scripta Mater.、J. Mater. Res.、Metall. Mater. Trans. A等期刊上。
引用本文:    
屈伟, 范同祥. 金属/陶瓷润湿性的实验表征和理论预测研究进展[J]. 材料导报, 2019, 33(21): 3606-3612.
QU Wei, FAN Tongxiang. Advances in the Wettability Research of Metal/Ceramic Systems:Experimental Characterization and Theoretical Estimation. Materials Reports, 2019, 33(21): 3606-3612.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120005  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3606
1 Xiao X, Jin W, Cheng F, et al. Journal of Materials Science, 2011, 46(10), 3424.
2 Gatzen M, Radel T, Thomy C. Journal of Materials Processing Technology, 2016, 238, 352.
3 Bhat K N, Prabhu K N, Satyanarayan. Journal of Materials Science-Materials in Electronics, 2014, 25(2SI), 864.
4 Lu J, Mu Y, Luo X. Materials Science and Engineering B, 2012, 177(20), 1759.
5 Bao S, Syvertsen M, Kvithyld A, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(12), 3922.
6 Li A B, Cui X P, Wang G S. Materials Letters, 2016, 185, 351.
7 El-Sabbagh A, Soliman M, Taha M. Journal of Materials Processing Technology, 2012, 212(2), 497.
8 Ploetz S, Nowak R, Lohmueller A, et al. Advanced Engineering Mate-rials, 2016, 18(11), 1884.
9 Wang X, Wang L, Luo L. Materials & Design, 2017, 121, 335.
10 Li W, Zong J, Huang R, et al. Materials & Design, 2016, 99, 225.
11 Wu D D, Wang H, Wei Y G, et al. Applied Mechanics and Materials, 2014, 536-537, 1477.
12 Laurent V, Chatain D, Eustathopoulos N. Materials Science and Enginee-ring A, 1991, 135(91), 84.
13 Chen J. Investigation on the wettability of metal and ceramic system. Ph.D. Thesis, Chongqing University, China, 1999 (in Chinese).
陈建. 金属/陶瓷润湿性研究. 博士学位论文, 重庆大学, 1999.
14 Espié L, Drevet B, Eustathopoulos N. Metallurgical and Materials Tran-sactions A, 1994, 25A, 599.
15 Naidich Y V, Zhuravlev V S. Refractories and Industrial Ceramics, 1974, 15(1), 55.
16 Lin Q, Cao R. Computational Materials Science, 2015, 99, 29.
17 Liu X Y. Research on the wettability and interfacial interaction between Ti-Al molten alloys and ceramics. Ph.D. Thesis, Chongqing University, China, 2016 (in Chinese).
刘许旸. Ti-Al系熔体与陶瓷的润湿性及界面相互作用的行为研究,博士学位论文, 重庆大学, 2016.
18 Passerone A, Muolo M L, Valenza F, et al. Acta Materialia, 2009, 57(2), 356.
19 Liu X, Lyu X, Dong H, et al. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2015, 46A(10), 4783.
20 Klinter A J, Mendoza-Suarez G, Drew R A L. Materials Science and Engineering A, 2008, 495(1-2), 147.
21 Nowak E, Combes G, Stitt E H, et al. Powder Technology, 2013, 233, 52.
22 Liu A H. The interfacial reaction law and micromechanism between tita-nium alloy metals and ceramic mould. Ph.D. Thesis, Harbin Institute of Technology, China, 2007 (in Chinese).
刘爱辉. 钛合金熔体与陶瓷铸型界面反应规律及微观机理研究. 博士学位论文, 哈尔滨工业大学, 2007.
23 Liu A H, Li B S. Materials Science Forum, 2016, 863, 3.
24 Lin Q L, Shen P, Qiu F. Scripta Materialia, 2009,60(11), 960.
25 Shen P, Fujii H, Nogi K. Journal of Materials Science, 2007, 42(10), 3564.
26 Shi L, Shen P, Zhang D, et al. Journal of Materials Science, 2012, 47(24), 8372.
27 Jin P, Sui R, Li F X. Acta Metallurgica Sinica, 2017(4), 479 (in Chinese).
靳鹏,隋然,李富祥.金属学报, 2017(4), 479.
28 Shen P, Wang Y, Ren L, et al. Applied Surface Science, 2015, 355, 930.
29 Nautiyal P, Gupta A, Seal S. Acta Materialia, 2017, 126, 124.
30 Wu M, Chang L L, Lu X, et al. Transactions of Materials and Heat Treatment, 2016, 37(7), 25 (in Chinese).
吴茂,常玲玲,路新,等. 材料热处理学报, 2016, 37(7), 25.
31 Wu M, Chang L, Zhang L, et al. Surface and Coatings Technology, 2016, 287, 145.
32 Fujii H, Nakae H, Okada K. Acta Metallurgica, 1993, 41(10), 1971.
33 Chiaramonte F P, Rosenthal B N. Journal of the American Ceramic Society, 1911, 74(3), 658.
34 Xue X M, Wang J T, Quan M X. Journal of Materials Science, 1991, 26(23), 6391.
35 Nicholas M G, Mortimer D A, Jones L M. Journal of Materials Science, 1990, 25(6), 2679.
36 Halverson D C. Journal of the American Ceramic Society, 1989, 72(5), 775.
37 Ding H D, Qian Y C, Fu S L. Journal of Academy of Armored Force Engineering, 2006, 20(2), 88 (in Chinese).
丁华东,钱耀川,傅苏黎.装甲兵工程学院学报, 2006, 20(2), 88.
38 Panasyuk A D, Oreshkin V D, Maslennikova V R. Power Metallurgy and Metal Ceramics,1979, 199, 487.
39 Naidich J V. Progress in Surface and Membrane Science,1981, 14, 353.
40 Contreras A, León C A, Drew R A L. Scripta Materialia, 2003, 48(12), 1625.
41 Frumin N, Frage N, Polak M, et al. Scripta Materialia, 1997, 37(8), 1263.
42 Samsonov G V, Panasyuk A D, Kozina G K. Power Metallurgy and Metal Ceramics,1968,7, 874.
43 Bao S, Tang K, Kvithyld A. Transactions of Nonferrous Metals Society of China, 2012, 22(8), 1930.
44 Han D S, Jones H, Atkinson H V. Journal of Materials Science, 1993, 28, 2654.
45 Koehler W. Aluminium, 1975, 51, 443.
46 Shimbo M, Naka M, Okamoto I. Journal of Materials Science Letters,1989, 8, 663.
47 Mills K C, Su Y C. International Materials Reviews, 2013, 51(6), 329.
48 Bao S, Tang K, Kvithyld A. Metallurgical and Materials Transactions B, 2011, 42(6), 1358.
49 Liu J. Study on the interface reaction and wettability of Cf/Al-Si compo-sites. Master's Thesis, Harbin Institute of Technology, China, 2014 (in China).
刘钧. Cf/Al-Si复合材料界面反应与润湿性研究. 硕士学位, 哈尔滨工业大学, 2014.
50 Zhu D Y, Jin Z H, Wang Y L. Journal of Xi'an Jiaotong University, 1997(10), 96 (in Chinese).
朱定一,金志浩,王永兰.西安交通大学学报, 1997(10), 96.
51 Chidambaram P R, Edwards G R, Olson D L. Metallurgical Transactions B, 1992, 23B, 215.
52 Jian Z Y, Yang G C, Zhou Y H. Acta Materiae Composite Sinica, 1996, 13(1), 46 (in Chinese).
坚增运,杨根仓,周尧和.复合材料学报, 1996, 13(1), 46.
53 Liu X B, Yang G C, Fan J F, et al. The Chinese Journal of Nonferrous Metals, 2003(2), 349 (in Chinese).
刘新宝,杨根仓,樊建锋,等. 中国有色金属学报. 2003(2), 349.
[1] 王若男, 刘斌, 陈爱强, 杨文哲, 马晓燕. 纳米流体液滴在铁板上蒸发的动力学研究[J]. 材料导报, 2019, 33(z1): 132-135.
[2] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[3] 刘晗, 薛松柏, 王刘珏, 林尧伟, 陈宏能. 金基中低温钎料的研究现状与展望[J]. 材料导报, 2019, 33(19): 3189-3195.
[4] 宁洪龙, 朱镇南, 蔡炜, 魏靖林, 周尚雄, 陶瑞强, 陈建秋, 刘贤哲, 姚日晖, 彭俊彪. 喷墨打印中的界面润湿问题[J]. 材料导报, 2019, 33(19): 3236-3241.
[5] 段煜, 罗学兵, 张云, 张文, 冯卫, 郝群庆, 罗丽珠, 刘琴, 陈秋云, 谭世勇, 朱燮刚, 赖新春. 金属Ce的电子结构与γ-α相变机制:理论模型的发展及借助角分辨光电子能谱的实验研究进展[J]. 材料导报, 2019, 33(19): 3313-3321.
[6] 王剑豪, 薛松柏, 吕兆萍, 王刘珏, 刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[7] 王星星, 彭进, 崔大田, 孙国元, 何鹏. 不锈钢表面电镀锡银钎料的润湿特性[J]. 《材料导报》期刊社, 2018, 32(8): 1263-1266.
[8] 王辉, 崔梦冰, 闫冬冬, 陈改荣. 添加剂对聚丙烯腈膜结构和性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 555-558.
[9] 刘兆文, 李毅波, 黄明辉, 汪必升, 李剑. 阳极氧化处理增强Al-Li合金胶接板剪切强度的机理[J]. 材料导报, 2018, 32(18): 3181-3184.
[10] 侯斌, 刘凤美, 王宏芹, 李琪, 万娣, 张宇鹏. 不同温度下Sn-0.7Cu钎料在非晶Fe84.3Si10.3B5.4合金上的润湿行为及界面特征[J]. 材料导报, 2018, 32(18): 3208-3212.
[11] 刘虹志, 彭家根, 肖坤祥. 陶瓷/金属钎焊体系反应润湿及残余热应力缓解的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 53-57.
[12] 李波, 张智豪, 刘祥, 李晓民, 吕镇峰. 基于表面理论的温拌SBS改性沥青-集料体系的粘附性*[J]. 《材料导报》期刊社, 2017, 31(4): 115-120.
[13] 吉海燕,范亚敏,吴殿国,费 婷,黄济华,许 晖,李华明. 仿生超疏水聚丙烯/二氧化钛复合薄膜的构筑及性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 101-104.
[14] 屈孟男, 马利利, 何金梅, 袁明娟, 姚亚丽, 刘向荣. 特异润湿型油水分离材料的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 152-161.
[15] 靳鹏, 钟伟强, 李富祥, 林巧力. 6061铝合金分别在Q235钢和纯钛表面的反应润湿*[J]. 《材料导报》期刊社, 2017, 31(18): 59-63.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed