Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3596-3605    https://doi.org/10.11896/cldb.18100011
  无机非金属及其复合材料 |
树枝状纤维形纳米球催化剂的研究进展
王亚斌1, 郭敏2,3, 史时辉1, 呼科科1, 张耀霞1, 刘忠2,3
1 延安大学化学与化工学院,陕西省化学反应工程重点实验室,延安 716000
2 中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室,西宁 810008
3 青海省盐湖资源化学重点实验室,西宁 810008
Research Progress of Dendritic Fibrous Nano-spheres Catalysts
WANG Yabin1, GUO Min2,3, SHI Shihui1, HU Keke1, ZHANG Yaoxia1, LIU Zhong2,3
1 Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000
2 Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008
3 Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008
下载:  全 文 ( PDF ) ( 25057KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 树枝状纤维形二氧化硅纳米球(KCC-1,类似于MCM-41命名规则)是继MCM-41、SBA-15之后,又一种里程碑式的介孔材料。与传统介孔二氧化硅相比,KCC-1具备三维中心辐射状孔道和多级孔结构,因而具有更高的比表面积、更大的孔体积、更高的孔渗透性、粒子内表面更易接触等优点。在KCC-1中,客体物质(如贵金属纳米粒子和生物大分子等)能够沿着中心辐射状孔道进行负载和/或输送,因此,KCC-1在纳米催化剂载体方面极具应用前景。
    近年来,KCC-1的成功开发掀起了树枝状纤维形纳米球及其催化剂的研究热潮。一方面,人们尝试基于其他本体材质构建树枝状纤维形纳米球,制备出树枝状纤维形二氧化钛纳米球、树枝状纤维形硅钛杂化纳米球、树枝状纤维形碳纳米球、树枝状纤维形碳氮杂化纳米球、树枝状纤维形硅铝杂化纳米球、树枝状纤维形硅铜铝杂化纳米球等。另一方面,随着研究的深入,以树枝状纤维形结构为基础的核-壳型、空心型、蛋黄-蛋壳型等新颖结构纳米催化剂也被成功开发,并在特定体系中展现出优越的催化性能。
    本文从构成树枝状纤维形纳米球的本体材料(元素)出发,对具有三维中心辐射状孔道和多级孔结构的纳米球催化剂进行分类,总结了各自的结构特征、催化对象及催化性能,综述了近几年树枝状纤维形纳米球催化剂的研究进展。最后,对树枝状纤维形纳米球催化剂的研究思路与发展趋势进行了分析和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王亚斌
郭敏
史时辉
呼科科
张耀霞
刘忠
关键词:  介孔材料  KCC-1  树枝状  纤维形  介孔纳米球  催化剂  二氧化硅纳米球  二氧化钛纳米球  碳纳米球  硅铝杂化纳米球  核-壳结构  空心结构  蛋黄-蛋壳结构    
Abstract: Dendritic fibrous silica-based nanospheres (denoted as KCC-1, similar to naming rule of MCM-41) have been regarded as another milestone in the history of mesoporous materials since MCM-41 and SBA-15. Compared with conventional mesoporous silica materials, KCC-1 with three-dimensional (3D) center-radial channels and hierarchical pores feature unique structural characteristics, including more open pore nanochannels, more highly accessible internal spaces, larger pore volumes, etc. Diverse guest species (such as noble metal nano-particles or functional biological macromolecules) could be easily transported through the radial porous architectures, achieving their efficient loading or reacting with the chemically active sites on these nanochannels as promising scaffolds/platforms to construct novel nanocatalysts. A majority of investigations have demonstrated that KCC-1 are ideal alternatives over traditional mesoporous MCM-41 or SBA-15, owing to their inherent structure superiorities.
    The successful creation of KCC-1 has aroused a wave of research upon dendritic fibrous nanospheres and the derivative catalysts. Researchers made fruitful attempts to develop dendritic fibrous nanospheres with other bulk elements, and obtained a series of analogues such as titania, silica-titania hybrid, carbon, carbon-nitrogen hybrid, silica-aluminum hybrid, silica-aluminum-copper hybrid, etc. nanospheres with dendritic fibrous structure. On the other hand, as the research further progressed, nanocatalysts with novel structures (e.g. core-shell, hollow, yolk-shell, etc.) on the basis of the original dendritic fibrous porous structure were also constructed and found to have excellent catalytic performances in specific catalyst-support systems.
    Starting with bulk elements which were utilized to construct dendritic fibrous nanospheres with 3D center-radial channels plus hierarchical pores, this article will review the worldwide recent research progress of this type of nanocatalysts, mainly classifying them, as well as summarizing individual structural characteristics, catalytic objects and performances. Last but not the least, research ideas and development trends will be analyzed and outlooked.
Key words:  mesoporous material    KCC-1    dendritic    fibrous    mesoporous nanospheres    catalyst    silica nanospheres    titania nanospheres    carbon nanospheres    silica-alumina hybrid nanospheres    core-shell structure    hollow structure    yolk-shell structure
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  O611.4  
  TB383  
基金资助: 国家自然科学基金项目(U1607105);青海省科技项目(2018-GX-101;2018-ZJ-722;2019-HZ-808);陕西省教育厅重点实验室项目(16JS120);延安大学博士科研启动项目(YDBK2017-39;YDBK2016-14);延安大学校级科研计划项目(YDQ2018-14);陕西省大学生创新创业训练计划项目(201820042);延安大学研究生教育创新计划项目(YCX201822)
作者简介:  王亚斌,工学博士。2017年7月毕业于哈尔滨工业大学化工与化学学院,现为延安大学化学与化工学院教师。主要从事树枝状多孔纳米粒子的制备与应用,以及均三嗪二硫醇类化合物的合成与应用。近年来,在树枝状多孔纳米粒子及均三嗪二硫醇类化合物领域发表论文25余篇,包括Journal of Materials Chemistry ASensors & Actuators B:ChemicalNanoscaleCorrosion Science、《无机材料学报》《哈尔滨工业大学学报》等。
    刘忠,工学博士。2012年7月毕业于中国科学院山西煤炭化学研究所,现为中国科学院青海盐湖研究所副研究员。主要从事功能材料的设计与制备,应用于盐湖特色资源的分离与提取。近年来,主要在无机材料的结构调控及表面改性方面进行探索,在Journal of Materials Chemistry AChemical CommunicationChemical Engineering Journal等期刊上发表文章20多篇。
引用本文:    
王亚斌, 郭敏, 史时辉, 呼科科, 张耀霞, 刘忠. 树枝状纤维形纳米球催化剂的研究进展[J]. 材料导报, 2019, 33(21): 3596-3605.
WANG Yabin, GUO Min, SHI Shihui, HU Keke, ZHANG Yaoxia, LIU Zhong. Research Progress of Dendritic Fibrous Nano-spheres Catalysts. Materials Reports, 2019, 33(21): 3596-3605.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100011  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3596
1 Li W, Liu J, Zhao D Y.Nature Reviews Materials, 2016, 1, 16023.
2 Polshettiwar V, Cha D, Zhang X X, et al.Angewandte Chemie International Edition, 2010, 49(50), 9652.
3 Ding X P, Wang Y B, Huang Y D. Journal of Harbin Institute of Techno-logy, 2018, 50(2), 116 (in Chinese).
丁秀萍, 王亚斌, 黄玉东. 哈尔滨工业大学学报, 2018, 50(2), 116.
4 Zhang H J, Li Z Y, Xu P P, et al.Chemical Communications, 2010, 46(36), 6783.
5 Park D S, Yun D, Kim T Y, et al.ChemSusChem, 2013, 6(12), 2281.
6 Sing K S W. Pure & Applied Chemistry, 1985, 57(4), 603.
7 Lim S W, Jang H G, Sim H I, et al.Journal of Porous Materials, 2014, 21(5), 797.
8 Min Y, Yang K G, Liang Z, et al.RSC Advances, 2015, 5(33), 26269.
9 Febriyanti E, Suendo V, Mukti R R, et al.Langmuir, 2016, 32(23), 5802.
10 Wang Y B, Liu Z, Shi S H,et al. Journal of Inorganic Materials, 2018, 33(12), 1274 (in Chinese).
王亚斌, 刘忠, 史时辉, 等. 无机材料学报, 2018, 33(12), 1274.
11 Du X, Shi B Y, Liang J, et al.Advanced Materials, 2013, 25(41), 5981.
12 Du X, Qiao S Z.Small, 2015, 11(4), 392.
13 Fréchet J M J, Tomalia D A.Dendrimers and other dendritic polymers. John Wiley & Sons, 2002, pp. 3.
14 Du X, He J H.Nanoscale, 2011, 4(3), 852.
15 Huang X, Tao Z, Praskavich J C, et al.Langmuir, 2014, 30(36), 10886.
16 Hamid M Y S, Firmansyah M L, Triwahyono S, et al. Applied Catalysis A General, 2017, 532, 86.
17 Bouhrara M, Ranga C, Fihri A, et al.ACS Sustainable Chemistry & Engineering, 2013, 1(9), 1192.
18 Shabir J, Garkoti C, Surabhi, et al.Catalysis Letters, 2018, 148(1), 194.
19 Siddiqui Z N, Khan K, Ahmed N. Catalysis Letters, 2014, 144(4), 623.
20 Mohammadbagheri Z, Najafi Chermahini A.Journal of Industrial and Engineering Chemistry, 2018, 62, 401.
21 Park D S, Yun D, Choi Y, et al.Chemical Engineering Journal, 2013, 228(6), 889.
22 Dhiman M, Chalke B, Polshettiwar V. ACS Sustainable Chemistry & Engineering, 2015, 3(12), 3224.
23 Dhiman M, Polshettiwar V.Journal of Materials Chemistry A, 2016, 4, 12416.
24 Fihri A, Cha D, Bouhrara M, et al.ChemSusChem, 2012, 5(1), 85.
25 Dhiman M, Chalke B, Polshettiwar V.Journal of Materials Chemistry A, 2017, 5(5), 1935.
26 Polshettiwar V, Thivolle-Cazat J, Taoufik M, et al.Angewandte Chemie International Edition, 2011, 50(12), 2747.
27 Singh R, Belgamwar R, Dhiman M, et al.Journal of Materials Chemistry B, 2018, 6(11), 1600.
28 Dong Z P,Le X D, Li X L, et al. Applied Catalysis B Environmental, 2014, 158(1), 129.
29 Le X D, Dong Z P, Li X L, et al.Catalysis Communications, 2015, 59, 21.
30 Dong Z P, Le X D, Dong C X, et al.Applied Catalysis B Environmental, 2015, 162(162), 372.
31 Le X D, Dong Z P, Zhang W, et al. Journal of Molecular Catalysis A: Chemical, 2014, 395, 58.
32 Tian J, Yang D L, Wen J G, et al.Nanoscale, 2018, 10(3), 1047.
33 Sadeghzadeh S M, Zhiani R, Khoobi M, et al.Microporous and Mesoporous Materials, 2018, 257, 147.
34 Saadati S M, Sadeghzadeh S M. Catalysis Letters, 2018, 148(6), 1692.
35 Qureshi Z S, Sarawade P B, Albert M, et al.ChemCatChem, 2015, 7(4), 635.
36 Yang H L, Li S W, Zhang X Y, et al.Journal of Materials Chemistry A, 2014, 2(2), 12060.
37 Sadeghzadeh S M.Green Chemistry, 2015, 17(5), 3059.
38 Sadeghzadeh S M, Zhiani R, Emrani S.Applied Organometallic Chemistry, 2018, 32(1), e3941.
39 Lee S, Choi K Y.Macromolecular Reaction Engineering, 2017, 11(1), 1600027.
40 Xu J, Zhang J Y, Peng H G, et al.Microporous and Mesoporous Mate-rials, 2017, 242, 90.
41 Shen D K, Chen L, Yang J P, et al.ACS Applied Materials & Interfaces, 2015, 7(31), 17450.
42 Fatah N A A, Triwahyono S, Jalil A A, et al.Chemical Engineering Journal, 2017, 314, 650.
43 Deng X H, Rin R, Tseng J C, et al.ChemCatChem, 2017, 9(22), 4238.
44 Jung D, Kim Y J, Lee J K.Bulletin of the Korean Chemical Society, 2016, 37(3), 386.
45 Pang J, Zhou G, Liu R, et al.Materials Science and Engineering C, 2016, 59, 35.
46 Wang F, Zhang Y, Du Z, et al.Nature Communications, 2018, 9(1), 1209.
47 Zhiani R, Sadeghzadeh S M, Emrani S, et al. Journal of Organometallic Chemistry, 2018, 855, 1.
48 Sadeghzadeh S M.Advanced Nano-Bio-Materials and Devices, 2017, 1(1), 78.
49 Wu M, Kong L Y, Wang K W, et al.Catalysis Science & Technology, 2015, 5(3), 1750.
50 Teh L P, Triwahyono S, Jalil A A, et al. Applied Catalysis A General, 2016, 523, 200.
51 Peng H G, Wang D R, Xu L, et al.Chinese Journal of Catalysis, 2013, 34(11), 2057.
52 Peng H G, Xu L, Wu H L, et al.Chemical Communications, 2013, 49(26), 2709.
53 Le X D, Dong Z P, Liu Y, et al. Journal of Materials Chemistry A, 2014, 2(46), 19696.
54 Sadeghzadeh S M.Applied Organometallic Chemistry, 2016, 30(10), 835.
55 Hassankhani A, Sadeghzadeh S M, Zhiani R.RSC Advances, 2018, 8(16), 8761.
56 Gao J, Kong W X, Zhou L Y, et al.Chemical Engineering Journal, 2017, 309, 70.
57 Wang D D, Li X Y, Liu Z H, et al.Solid State Sciences, 2017, 63, 62.
58 Rahal R, Wankhade A, Cha D, et al.RSC Advances, 2012, 2(18), 7048.
59 My Ali E K, Dilip S K, Ouellet L, et al. U.S. patent application, US7101754, 2006.
60 Yong L, Che R C, Gang C, et al. Science Advances, 2015, 1(4), 1500166.
61 Singh R, Bapat R, Qin L, et al.ACS Catalysis, 2016, 6(5), 2770.
62 Bayal N, Singh R, Polshettiwar V.ChemSusChem, 2017, 10(10), 2182.
63 Moon D S, Lee J K.Langmuir, 2012, 28(33), 12341.
64 Moon D S, LeeJ K. Langmuir, 2014, 30(51), 15574.
65 Wang Z Z, Balkus K J.Microporous and Mesoporous Materials, 2017, 243, 76.
66 Wang Z Z, Perananthan S, Panangala S D, et al.Journal of Nanoscience and Nanotechnology, 2018, 18(1), 414.
67 Lin C X C, Xu C, Yang Y, et al.New Journal of Chemistry, 2017, 41, 8754.
68 Seo B, Lee C, Yoo D, et al.RSC Advances, 2017, 7(16), 9587.
69 Du X, Zhao C X, Li X Y, et al.Journal of Alloys and Compounds, 2017, 700, 83.
70 Du X, Zhao C X, Li X Y, et al.European Journal of Inorganic Chemistry, 2017, 2017(19), 2517.
71 Zhang J S, Zhang M W, Yang C, et al.Advanced Materials, 2014, 26(24), 4121.
72 Bhunia M K, Melissen S, Parida M R, et al.Chemistry of Materials, 2015, 27(24), 8237.
73 Chen Z W, Zhao C Q, Ju E G, et al.Advanced Materials, 2016, 28(8), 1682.
74 Gao J, Wang Y, Du Y J, et al. Chemical Engineering Journal, 2017, 317(315), 175.
75 Tao L, Zhong M M, Chen J, et al.Green Chemistry, 2018, 20(1), 188.
76 Sheng Y, Zeng H C.ACS Applied Materials & Interfaces, 2015, 7(24), 13578.
77 Lai L, Zhang L L, Hu C, et al.Journal of Materials Chemistry A, 2016, 4(22), 8610.
78 Jiao J Q, Fu J Y, Wei Y C, et al.Journal of Catalysis, 2017, 356, 269.
79 Choi Y, Yun Y S, Park H, et al.Chemical Communications, 2014, 50(57), 7652.
80 Xue X L, Lang W Z, Yan X, et al.ACS Applied Materials & Interfaces, 2017, 9(18), 15408.
81 Singh B, Polshettiwar V.Journal of Materials Chemistry A, 2016, 4(18), 7005.
82 Patil U, Fihri A, Emwas A H, et al.Chemical Science, 2012, 3(7), 2224.
83 Yang J P, Chen W Y, Shen D K, et al.Journal of Materials Chemistry A, 2014, 2(29), 11045.
84 Yang Y N, Lu Y, Abbaraju P L, et al.Angewandte Chemie International Edition, 2017, 56(29), 8446.
[1] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[2] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[3] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[4] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[5] 鲍艳, 刘盼, 郭佳佳. 利用双子表面活性剂辅助制备纳米材料和介孔材料的研究进展[J]. 材料导报, 2019, 33(21): 3678-3685.
[6] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[7] 施露, 张杰, 陈蓉, 沈美庆, 单斌. 锰基多元氧化物的NO催化氧化研究进展[J]. 材料导报, 2019, 33(13): 2167-2173.
[8] 闫静, 田晓, 赵宣, 赵丽娟, 杨艳春, 陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[9] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
[10] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[11] 孙培川, 魏清茂, 张宇振, 杨喜昆, 王剑华. 核壳型铂基燃料电池催化剂制备方法与微结构控制综述[J]. 《材料导报》期刊社, 2018, 32(9): 1427-1434.
[12] 李旭力, 王晓静, 赵君, 李玉佩, 李发堂, 陈学敏. 催化分解水制氢体系助催化剂研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1057-1064.
[13] 姜啟亮, 陈琦, 姜付本, 陈宬, VERPOORT Francis. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1165-1173.
[14] 王霏, 徐俊明, 蒋剑春, 刘朋, 周明浩, 王奎. 油脂加氢制备生物柴油用催化剂的研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 765-771.
[15] 张利波, 王璐, 曲雯雯, 徐盛明, 张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 《材料导报》期刊社, 2018, 32(5): 772-779.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed