Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 765-771    https://doi.org/10.11896/j.issn.1005-023X.2018.05.012
  材料综述 |
油脂加氢制备生物柴油用催化剂的研究进展
王霏1, 徐俊明1, 2, 蒋剑春1, 2, 刘朋1, 周明浩1, 王奎1
1 中国林业科学研究院林产化学工业研究所,生物质化学利用国家工程实验室,国家林业局林产化学工程重点开放实验室,江苏省生物质能源与材料重点实验室,南京 210042;
2 江苏强林生物能源材料有限公司,溧阳 213364
Advances in Catalysts Applied to Bio-diesel Production from Oil Hydrotreatment
WANG Fei1, XU Junming1,2, JIANG Jianchun1,2, LIU Peng1, ZHOU Minghao1, WANG Kui1
1 Key Laboratory of Biomass Energy Sources and Materials, Key and Open Laboratory of Forest Chemical Engineering of SFA, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042;
2 Jiangsu Qianglin Biomass Energy Co.,Ltd.,Liyang 213364
下载:  全 文 ( PDF ) ( 1253KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用油脂加氢制备的第二代生物柴油具有辛烷值高、氧含量低等特点,可以直接与石化柴油混合使用。第二代生物柴油的制备和使用可以有效降低对不可再生的化石燃料的依赖,并能缓解当前严重的环境问题。在第二代生物柴油的研究中,催化剂的研发至关重要。本文综述了油脂加氢领域的催化剂的种类、催化转化路径以及最前沿的研究进展。其中,贵金属基催化剂催化加氢活性比较高,主要以脱羧和脱羰反应路径为主,但是制备成本昂贵;传统的钼基催化剂主要以加氢脱氧反应为主,但是使用过程中需要硫化,对环境造成一定的污染;新型的碳化钼基催化剂和镍基催化剂的催化反应路径分别为加氢脱氧和脱羧-脱羰;以沸石分子筛作载体时,油脂加氢产物中异构化烃类得率较高。同时,文章还对催化剂的研究发展提出建议和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王霏
徐俊明
蒋剑春
刘朋
周明浩
王奎
关键词:  油脂  加氢  第二代生物柴油  催化剂  反应路径    
Abstract: The second generation bio-diesel has the properties of high octane number, low oxygen content and can blend directly with present diesel. The production and application of the second generation bio-diesel can effectively reduce the usage of limi-ted fossil fuel, and thus improve the quality of environment. The research of catalysts is considered as the most crucial part during production of second generation bio-diesel. This article reviews the category, catalytic reaction pathway and the forefront research of catalysts used in oil hydrotreatment. Noble metal catalysts possess high activity by decarboxylation/decarbonylation pathway, but they are expensive. The reaction pathway of conventional molybdenum catalyst is mainly hydrodeoxygenation. Sulfuration of catalyst is necessary before hydrotreatment, which will lead to serious environmental pollution. New-style molybdenum carbide catalyst and nickel catalyst perform catalytic reaction by hydrodeoxygenation pathway and decarboxylation/decarbonylation pathway, respectively. Zeolite as support improves the yield of isomerization alkane in products. Moreover, the prospect of future research of the catalyst is provided.
Key words:  oil    hydrotreatment    second generation bio-diesel    catalyst    reaction pathway
               出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  TQ644.5  
基金资助: 中国林科院中央级公益性科研院所基本科研业务费重点项目(CAFYBB2017ZC004)
通讯作者:  蒋剑春:通信作者,男,研究员,主要从事生物质能源与活性炭方面的研究 E-mail:bio-energy@163.com   
作者简介:  王霏:男,1990年生,博士研究生,主要从事生物质能源与材料的研究 E-mail:feiwang_office@yeah.net
引用本文:    
王霏, 徐俊明, 蒋剑春, 刘朋, 周明浩, 王奎. 油脂加氢制备生物柴油用催化剂的研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 765-771.
WANG Fei, XU Junming, JIANG Jianchun, LIU Peng, ZHOU Minghao, WANG Kui. Advances in Catalysts Applied to Bio-diesel Production from Oil Hydrotreatment. Materials Reports, 2018, 32(5): 765-771.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.012  或          http://www.mater-rep.com/CN/Y2018/V32/I5/765
1 Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J].Chemical Reviews,2006,106(9):4044.
2 Barakos N, Pasias S, Papayannakos N. Transesterification of triglycerides in high and low quality oil feeds over an HT2 hydrotalcite catalyst[J].Bioresource Technology,2008,99(11):5037.
3 Ryymin E M, Honkela M L, Viljava T R, et al. Insight to sulfur species in the hydrodeoxygenation of aliphatic esters over sulfided NiMo/γ-Al2O3 catalyst[J].Applied Catalysis A:General,2009,358(1):42.
4 Donnis B, Egeberg R G, Blom P, et al. Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes[J].Topics in Catalysis,2009,52(3):229.
[1] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[2] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[3] 巢云秀, 杨宏伟, 原禧敏, 李郁秀, 李耀. 花枝状纳米银的制备及对4-硝基苯酚加氢反应的催化性能[J]. 材料导报, 2019, 33(z1): 307-309.
[4] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[5] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[6] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[7] 闫静,田晓,赵宣,赵丽娟,杨艳春,陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[8] 施露,张杰,陈蓉,沈美庆,单斌. 锰基多元氧化物的NO催化氧化研究进展[J]. 材料导报, 2019, 33(13): 2167-2173.
[9] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
[10] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[11] 周军, 吴雷, 梁坤, 宋永辉, 张秋利. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1): 191-197.
[12] 孙培川, 魏清茂, 张宇振, 杨喜昆, 王剑华. 核壳型铂基燃料电池催化剂制备方法与微结构控制综述[J]. 《材料导报》期刊社, 2018, 32(9): 1427-1434.
[13] 李旭力, 王晓静, 赵君, 李玉佩, 李发堂, 陈学敏. 催化分解水制氢体系助催化剂研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1057-1064.
[14] 姜啟亮, 陈琦, 姜付本, 陈宬, VERPOORT Francis. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1165-1173.
[15] 解婕, 包桂蓉, 孟一鸣, 杨智翔, 何涛. 超临界甲醇中2,3-二氢苯并呋喃加氢脱氧的理论研究[J]. 材料导报, 2018, 32(6): 977-982.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed