Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 555-558    https://doi.org/10.11896/j.issn.1005-023X.2018.04.009
  材料研究 |
添加剂对聚丙烯腈膜结构和性能的影响
王辉1, 2, 崔梦冰1, 2, 闫冬冬1, 陈改荣1, 2
1 新乡学院化学化工学院,新乡 453003;
2 纳米碳修饰膜技术河南省工程实验室,新乡 453003
Effects of Additives on Structure and Performance of Polyacrylonitrile Membrane
WANG Hui1, 2, CUI Mengbing1, 2, YAN Dongdong1, CHEN Gairong1, 2
1 College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang 453003;
2 Nano Carbon-Modified Membrane Technology Engineering Laboratory of Henan Province, Xinxiang 453003
下载:  全 文 ( PDF ) ( 2706KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用相转化法制备聚丙烯腈膜,分别以高分子聚乙烯吡咯烷酮(PVP-K30和PVP-K90)、聚乙二醇(PEG-2000和PEG-6000)和有机小分子乙二醇、无机盐氯化锂(LiCl)等六种物质作为制备聚丙烯腈膜的添加剂,含量均为3%(质量分数)。并对聚丙烯腈膜的表面和断面结构、水通量、孔隙率、水接触角及对牛血清蛋白(BSA)的截留率等进行了测试及表征。结果表明:以PEG-2000 作为添加剂制得的膜的微孔较多,孔径较大,断面为指状结构,具有最大的水通量和孔隙率,达到436 L/(m2·h)和86%;有机小分子乙二醇作为添加剂制得的膜的水通量较低,但对BSA 的截留率最高,为93%;聚乙烯吡咯烷酮(PVP)和聚乙二醇(PEG)制得的膜的水接触角较低,最小达到68°,亲水性较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王辉
崔梦冰
闫冬冬
陈改荣
关键词:  聚丙烯腈膜  结构  水通量  接触角  截留率    
Abstract: Polyacrylonitrile membranes were prepared by phase-inversion method. Polyvinylpyrrolidone (PVP-K30, PVP-K90), polyethylene glycol (PEG-2000, PEG-6000), small organic molecule glycol and inorganic salt lithium chloride (LiCl) were used as additives. The mass fraction of the additive was 3 wt%. The surface and sectional structure, water flux, porosity, water contact angle and BSA rejection of the polyacrylonitrile membranes were studied. The results showed that the polyacrylonitrile membrane with PEG-2000 had many large pores, the sectional structure was sponge-like. It had highest water flux value and porosity, which were 436 L/(m2·h) and 86%, respectively. The water flux value of the membrane with glycol was low, but the rejection rate of BSA had a highest value of 93%. The membranes with PVP and PEG showed good hydrophilicity, the lowest value of contact angle was 68°.
Key words:  polyacrylonitrile membrane    structure    water flux    contact angle    rejection
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TQ028.8  
基金资助: 河南省教育厅科学技术重点研究科研项目(15A150075); 新乡学院科技创新基金项目(15ZC01); 新乡学院空气净化与水污染防治创新团队项目(XXUTD20170111)
通讯作者:  陈改荣:,女,1962年生,教授,研究方向为纳米功能材料 E-mail:whxsbylw@163.com   
作者简介:  王辉:男,1983年生,讲师,主要研究方向为膜技术及材料化学 E-mail:wyzhui19@163.com
引用本文:    
王辉, 崔梦冰, 闫冬冬, 陈改荣. 添加剂对聚丙烯腈膜结构和性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 555-558.
WANG Hui, CUI Mengbing, YAN Dongdong, CHEN Gairong. Effects of Additives on Structure and Performance of Polyacrylonitrile Membrane. Materials Reports, 2018, 32(4): 555-558.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.009  或          http://www.mater-rep.com/CN/Y2018/V32/I4/555
1 Ma C, Huang H T, Gu J Y, et al. Polymer separation membrane materials and their research progress[J]. Materials Review A:Review Papers, 2016, 30(5):144(in Chinese).
马超,黄海涛,顾计友,等.高分子分离膜材料及其研究进展[J].材料导报:综述篇,2016,30(5):144.
2 Gao J, Wang X X, Zhang J S, et al. Preparation of heat-treated PAN/SiO2 hybrid hollow fiber membrane contactor for acetylene absorption[J]. Separation and Purification Technology, 2016,159:116.
3 Abedi M, Sadeghi M, Chenar M P. Improving antifouling perfor-mance of PAN hollow fiber membrane using surface modification me-thod[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015,55:42.
4 Peng Y B, Guo F, Wen Q Y, et al. A novel polyacrylonitrile membrane with a high flux for mulsified oil/water separation[J]. Separation and Purification Technology,2017,184:72.
5 Tripathi B P, Dubey Nidhi C, Subair R, et al. Enhanced hydrophilic and antifouling polyacrylonitrile membrane with polydopamine modified silica nanoparticles[J].RSC Advances,2016,6(6):4448.
6 Kim D, Moreno N, Nunes S P. Fabrication of polyacrylonitrile hollow fiber membranes from ionic liquid solutions[J]. Polymer Che-mistry,2016,7(1):113.
7 Mei S,Xiao C F, et al. Hydrolysis modification of PVC/PAN/SiO2 composite hollow fiber membrane[J]. Desalination,2011,280:378.
8 Mohsenpour S, Safekordi A, Tavakolmoghadam M, et al. Comparison of the membrane morphology based on the phase diagram using PVP as an organic additive and TiO2 as an inorganic additive[J]. Polymer, 2016, 97:559.
9 Ji J W, Yun Y B, Zeng Z, et al.Preparation and arsenic adsorption assessment of PPESK ultrafiltration membranes with organic/inorganic additives[J]. Applied Surface Science, 2015, 351:715.
10 Li H B, Shi W Y, Zhang Y F, et al. Effects of additives on the morphology and performance of PPTA/PVDF in situ blend UF membrane [J]. Polymer, 2014, 6(6):1846.
11 Ma Y X, Shi F M, Ma J, et al. Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes [J].Desalination,2011,272:51.
12 Lee J, Park B, Kim J, et al. Effect of PVP, lithium chloride, and glycerol additives on PVDF dual-layer hollow fiber membranes fabricated using simultaneous spinning of TIPS and NIPS[J]. Macromolecular Research, 2015, 23(3):291.
13 Zhang P Y,Wang Y L, Xu Z L, et al. Preparation of poly (vinylbutyral) hollow fiber ultrafiltration membrane via wet-spinning method using PVP as additive[J].Desalination,2011,278:186.
14 徐又一,徐志康.高分子膜材料[M].北京:化学工业出版社,2005.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[3] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[4] 王若男, 刘斌, 陈爱强, 杨文哲, 马晓燕. 纳米流体液滴在铁板上蒸发的动力学研究[J]. 材料导报, 2019, 33(z1): 132-135.
[5] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[6] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[7] 巢云秀, 杨宏伟, 原禧敏, 李郁秀, 李耀. 花枝状纳米银的制备及对4-硝基苯酚加氢反应的催化性能[J]. 材料导报, 2019, 33(z1): 307-309.
[8] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[9] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[10] 苏力军, 张丽娟, 宋寒, 郭慧, 郭建业, 李文静, 杨洁颖, 裴雨辰. 非压力浸渍成型技术制备夹层结构气凝胶外防热材料[J]. 材料导报, 2019, 33(z1): 206-210.
[11] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[12] 李景文, 乔建刚, 付旭, 刘晓立. 岩土锚固吸能锚杆支护材料/结构及其力学性能研究进展[J]. 材料导报, 2019, 33(9): 1567-1574.
[13] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[14] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[15] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed