Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22100133-5    https://doi.org/10.11896/cldb.22100133
  高分子与聚合物基复合材料 |
多级结构超疏水表面的制备与性能分析
位振1,2, 戴飞2, 何强1,2,*
1 中国民用航空飞行学院民航安全工程学院,四川 广汉 618307
2 甘肃农业大学机电工程学院,兰州 730000
Preparation and Performance Analysis of Superhydrophobic Surface with Multilevel Structure
WEI Zhen1,2, DAI Fei2, HE Qiang1,2,*
1 Civil Aviation Safety Engineering College of Civil Aviation Flight Academy of China, Guanghan 618307, Sichuan, China
2 School of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 5593KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着橡胶产品应用的广泛拓展,具备超疏水性能的橡胶产品越来越受关注。然而如何便捷、大规模地制备超疏水表面对橡胶的疏水应用具有重要的意义。本工作通过在未硫化的氟硅橡胶表面喷涂一层二氧化硅粒子,构造第一层级微观结构,然后通过模板法在氟硅橡胶表面成功地复制了不锈钢编织网的结构,构造了第二层级结构,并分析了构造的氟硅橡胶表面的官能团存在情况、微观结构、疏水性能以及液滴弹跳和自清洁性能。结果表明:通过模板法和喷涂技术在氟硅橡胶表面制备的多级微观结构为液滴提供了支持力和排斥作用,其静态接触角为(156.7±0.97)°,滚动角为1°。并且构建的多级结构表面具有优异的液滴弹跳性能和良好的自清洁性能。在氟硅橡胶表面构建多级结构可以极大地提升表面的疏水性能,为制备超疏水表面提供一种新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
位振
戴飞
何强
关键词:  多级结构  喷涂法  模板法  氟硅橡胶  超疏水    
Abstract: With the extensive application of rubber products, more and more attention has been paid to rubber products with superhydrophobic properties. However, how to prepare superhydrophobic surface conveniently and on a large scale is of great significance to the application of rubber. In this work, a layer of silicon dioxide particles was sprayed on the surface of unvulcanized fluorosilicone rubber to construct the first-level microstructure. Then the structure of stainless steel woven net was successfully replicated on the surface of fluorosilicone rubber by template method, and the second hierarchical structure was constructed. The existence of functional groups, microstructure, hydrophobicity, droplet bounce and self-cleaning performance of the surface of the fluorosilicone rubber were analyzed. The results show that the multilevel microstructure prepared on the surface of fluorosilicone rubber by template method and spraying technology provide the supporting force and repelling effect for the droplets, and its static contact angle is (156.7±0.97)° and rolling angle is 1°. And the constructed multilevel structure surface had excellent droplet bouncing performance and good self-cleaning performance. Constructing multilevel structure on the surface of fluorosilicone rubber can greatly improve the hydrophobicity of the surface, which provided a new idea for preparing superhydrophobic surface.
Key words:  multilevel structure    spraying method    template method    fluorosilicone rubber    superhydrophobic
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TQ333  
基金资助: 2023年四川省科技计划项目(23NSFSC1923)
通讯作者:  * 何强,中国民用航空飞行学院民航安全工程学院教授、博士研究生导师。2012年西安理工大学精仪专业博士毕业。目前主要从事电动飞机、轴承密封等方面的研究工作。发表论文160余篇,包括Coordination Chemistry Reviews、Journal of Colloid And Interface Science、Progress in Organic Coa-tings、Colloids and Surfaces A: Physicochemical and Engineering Aspects、ACS Omega、Polymer Testing等。aystar@163.com   
作者简介:  位振,2019年7月毕业于新乡学院机械设计制造及其自动化专业,获得学士学位。现为甘肃农业大学机电工程学院硕士研究生,在何强教授和戴飞教授的指导下进行研究。目前主要进行多功能复合材料的制备与机理研究。
引用本文:    
位振, 戴飞, 何强. 多级结构超疏水表面的制备与性能分析[J]. 材料导报, 2024, 38(9): 22100133-5.
WEI Zhen, DAI Fei, HE Qiang. Preparation and Performance Analysis of Superhydrophobic Surface with Multilevel Structure. Materials Reports, 2024, 38(9): 22100133-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100133  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22100133
1 Parvate S, Dixit P, Chattopadhyay S. The Journal of Physical Chemistry B, 2020, 124(8), 1323.
2 Xie Q W, Quan X J, Li R H,et al. Journal of Chongqing University of Technology (Natural Science), 2017, 31(6),99(in Chinese).
谢清伟, 全学军, 李瑞恒, 等.重庆理工大学学报(自然科学), 2017, 31(6), 99.
3 Hooda A, Goyat M S, Pandey J K, et al. Progress in Organic Coatings, 2020, 142, 105557.
4 Wei D W, Wei H, Gauthier A C, et al. Journal of Bioresources and Bioproducts, 2020, 5(1), 1.
5 Wang D H, Sun Q Q, Hokkanen M J, et al. Nature, 2020, 582(7810), 55.
6 Wei Z, He Q, Zhang F Y, et al. Sensors and Actuators A, Physical, 2023, 350, 114123.
7 Wu S, Ning D W, Xu D Z, et al. Carbohydrate research, 2022, 511, 108488.
8 Zhou J P, Zhu C F, Liang H B, et al. Materials, 2020, 13(6), 1388.
9 Lei H, Xiong M N, Xiao J, et al. Progress in Organic Coatings, 2018, 124, 158.
10 Chen M L, Ou B L, Guo Y J, et al. Journal of Macromolecular Science, Part A, 2018, 55(6), 483.
11 Pan A J, Cai R R, Zhang L Z. Applied Surface Science, 2021, 568, 150872.
12 Wang G F, Zhou W, Zhou J, et al. Surface Engineering, 2021, 37(3), 278.
13 Sun R Y, Zhao J, Li Z, et al. Progress in Organic Coatings, 2020, 147, 105745.
14 Liu L, Kong G, Zhu Y B, et al. Colloid and Interface Science Communications, 2021, 45, 100518.
15 Zheng K, Zhu J, Liu H F, et al. Materials, 2021, 14(4), 988.
16 Zheng J W, Yang J C, Cao W, et al. Ceramics International, 2022, 48(21), 32143.
17 Cao Y Z, Lu Y M, Liu N, et al. Surfaces and Interfaces, 2022, 32, 102100.
18 Peng L C, Meng Y H, Li H. Cellulose, 2016, 23, 2073.
19 Wang J P, Wu Y L, Zhang D G, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587, 124331.
20 Lv D M, Sheng L, Wan J P, et al. Polymer Chemistry, 2019, 10(3), 331.
21 He Q, Xu Z H, Li A L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125837.
22 Li X, Chen L, Weng D, et al. Chemical Engineering Journal, 2022, 427, 130658.
23 Yang F S, Zhang Z Y, Li Y Q, et al. Materials Reports, 2021, 35(12), 12190 (in Chinese).
杨福生, 张振宇, 李云清, 等. 材料导报, 2021, 35(12), 12190.
24 Dou S Z, L N, W X Y, et al. Sensors and Actuators B: Chemical, 2020 (306), 127573.
25 Daneshmand H, Sazgar A, Araghchi M. Applied Surface Science, 2021, 567, 150825.
26 Huang J D, Cai P H, Li M M, et al. Materials, 2020, 13(23), 5380.
27 Chung J H, Heo D, Kim B, et al. Micromachines, 2018, 9(11), 593.
28 Li C Q, Cao Z J, Xie C, et al. Journal of Applied Polymer Science, 2019, 136(28), 47762.
29 Ranjbar Z, Yari H, Momen G. Surfaces and Interfaces, 2022, 33, 102282.
30 Xu W T, Yi P Y, Gao J, et al. ACS Applied Materials & Interfaces, 2019, 12(2), 3042.
31 Liu S Z, Zhang Y, Fan L Y, et al. Materials Reports, 2020, 34(17), 17099 (in Chinese).
刘帅卓, 张颖, 范雷倚, 等. 材料导报, 2020, 34(17), 17099.
32 Hoang A T, Nižetić S, Duong X Q, et al. Chemosphere, 2021, 277, 130274.
33 Latthe S S, Sutar R S, Kodag V S, et al. Progress in Organic Coatings, 2019, 128, 52.
34 Zhang X W, Zhou T, Liu J, et al. Applied Surface Science, 2021, 540, 148337.
35 Chen H, Jin Y Y, Lei L, et al. Applied Surface Science, 2018, 462, 149.
36 Chen X W, Wang M Y, Xin Y, et al. Surfaces and Interfaces, 2022, 31, 102022.
37 Xie C X, Lai X J, Li H Q, et al. Journal of Macromolecular Science, Part A, 2020, 57(10), 725.
[1] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[2] 朱飞, 杨雪, 苏静, 王鸿博. 酶促咖啡酸制备超疏水棉织物及其油水分离应用[J]. 材料导报, 2024, 38(3): 22100129-7.
[3] 李权威, 刘乐乐, 赵丕琪, 于有良, 邵明军, 芦令超. 氟硅树脂基超疏水涂层的组成设计及性能评价[J]. 材料导报, 2023, 37(9): 21090111-7.
[4] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[5] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[6] 吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
[7] 周子吉, 孙慧慧, 王群, 曹文, 周忠华, 黄悦. 可见光宽波带减反超疏玻璃的制备工艺及结构探讨[J]. 材料导报, 2023, 37(18): 22030191-7.
[8] 李少鹏, 王德芳, 谢文玲, 李秀兰, 李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响[J]. 材料导报, 2023, 37(18): 22010063-6.
[9] 田玉玉, 何韧, 吴菊英, 钟卫洲, 张凯. 电容式柔性压力传感器的性能优化原理及研究进展[J]. 材料导报, 2023, 37(16): 21110277-14.
[10] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[11] 杨福生, 王百祥, 张妍, 任永忠, 陈永哲, 杨武. 纳米银协同沙子构筑超疏水表面及其性能研究[J]. 材料导报, 2022, 36(6): 21010001-5.
[12] 王池嘉, 刘书佩, 王子华, 罗红欣. 防污涂层研究及应用新进展[J]. 材料导报, 2022, 36(23): 21020004-8.
[13] 张定军, 张晟祥, 包亮军, 魏芳, 李文杰. 一种感温聚合物复合凝胶暂堵剂的制备及性能研究[J]. 材料导报, 2022, 36(23): 21050244-6.
[14] 盛奥, 姜昊基, 赵亚欣, 魏忠, 李昊, 贾昊, 王贺云. F-ZIF-90/PDMS混合基质膜的制备及强化乙醇传递过程的研究[J]. 材料导报, 2022, 36(17): 21030316-6.
[15] 刘晨, 丁德一, 李逸辰, 姚东东, 李天宇, 郑亚萍. 防冰材料研究进展[J]. 材料导报, 2022, 36(16): 20080061-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed