Preparation and Performance Analysis of Superhydrophobic Surface with Multilevel Structure
WEI Zhen1,2, DAI Fei2, HE Qiang1,2,*
1 Civil Aviation Safety Engineering College of Civil Aviation Flight Academy of China, Guanghan 618307, Sichuan, China 2 School of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730000, China
Abstract: With the extensive application of rubber products, more and more attention has been paid to rubber products with superhydrophobic properties. However, how to prepare superhydrophobic surface conveniently and on a large scale is of great significance to the application of rubber. In this work, a layer of silicon dioxide particles was sprayed on the surface of unvulcanized fluorosilicone rubber to construct the first-level microstructure. Then the structure of stainless steel woven net was successfully replicated on the surface of fluorosilicone rubber by template method, and the second hierarchical structure was constructed. The existence of functional groups, microstructure, hydrophobicity, droplet bounce and self-cleaning performance of the surface of the fluorosilicone rubber were analyzed. The results show that the multilevel microstructure prepared on the surface of fluorosilicone rubber by template method and spraying technology provide the supporting force and repelling effect for the droplets, and its static contact angle is (156.7±0.97)° and rolling angle is 1°. And the constructed multilevel structure surface had excellent droplet bouncing performance and good self-cleaning performance. Constructing multilevel structure on the surface of fluorosilicone rubber can greatly improve the hydrophobicity of the surface, which provided a new idea for preparing superhydrophobic surface.
通讯作者:
* 何强,中国民用航空飞行学院民航安全工程学院教授、博士研究生导师。2012年西安理工大学精仪专业博士毕业。目前主要从事电动飞机、轴承密封等方面的研究工作。发表论文160余篇,包括Coordination Chemistry Reviews、Journal of Colloid And Interface Science、Progress in Organic Coa-tings、Colloids and Surfaces A: Physicochemical and Engineering Aspects、ACS Omega、Polymer Testing等。aystar@163.com
1 Parvate S, Dixit P, Chattopadhyay S. The Journal of Physical Chemistry B, 2020, 124(8), 1323. 2 Xie Q W, Quan X J, Li R H,et al. Journal of Chongqing University of Technology (Natural Science), 2017, 31(6),99(in Chinese). 谢清伟, 全学军, 李瑞恒, 等.重庆理工大学学报(自然科学), 2017, 31(6), 99. 3 Hooda A, Goyat M S, Pandey J K, et al. Progress in Organic Coatings, 2020, 142, 105557. 4 Wei D W, Wei H, Gauthier A C, et al. Journal of Bioresources and Bioproducts, 2020, 5(1), 1. 5 Wang D H, Sun Q Q, Hokkanen M J, et al. Nature, 2020, 582(7810), 55. 6 Wei Z, He Q, Zhang F Y, et al. Sensors and Actuators A, Physical, 2023, 350, 114123. 7 Wu S, Ning D W, Xu D Z, et al. Carbohydrate research, 2022, 511, 108488. 8 Zhou J P, Zhu C F, Liang H B, et al. Materials, 2020, 13(6), 1388. 9 Lei H, Xiong M N, Xiao J, et al. Progress in Organic Coatings, 2018, 124, 158. 10 Chen M L, Ou B L, Guo Y J, et al. Journal of Macromolecular Science, Part A, 2018, 55(6), 483. 11 Pan A J, Cai R R, Zhang L Z. Applied Surface Science, 2021, 568, 150872. 12 Wang G F, Zhou W, Zhou J, et al. Surface Engineering, 2021, 37(3), 278. 13 Sun R Y, Zhao J, Li Z, et al. Progress in Organic Coatings, 2020, 147, 105745. 14 Liu L, Kong G, Zhu Y B, et al. Colloid and Interface Science Communications, 2021, 45, 100518. 15 Zheng K, Zhu J, Liu H F, et al. Materials, 2021, 14(4), 988. 16 Zheng J W, Yang J C, Cao W, et al. Ceramics International, 2022, 48(21), 32143. 17 Cao Y Z, Lu Y M, Liu N, et al. Surfaces and Interfaces, 2022, 32, 102100. 18 Peng L C, Meng Y H, Li H. Cellulose, 2016, 23, 2073. 19 Wang J P, Wu Y L, Zhang D G, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587, 124331. 20 Lv D M, Sheng L, Wan J P, et al. Polymer Chemistry, 2019, 10(3), 331. 21 He Q, Xu Z H, Li A L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125837. 22 Li X, Chen L, Weng D, et al. Chemical Engineering Journal, 2022, 427, 130658. 23 Yang F S, Zhang Z Y, Li Y Q, et al. Materials Reports, 2021, 35(12), 12190 (in Chinese). 杨福生, 张振宇, 李云清, 等. 材料导报, 2021, 35(12), 12190. 24 Dou S Z, L N, W X Y, et al. Sensors and Actuators B: Chemical, 2020 (306), 127573. 25 Daneshmand H, Sazgar A, Araghchi M. Applied Surface Science, 2021, 567, 150825. 26 Huang J D, Cai P H, Li M M, et al. Materials, 2020, 13(23), 5380. 27 Chung J H, Heo D, Kim B, et al. Micromachines, 2018, 9(11), 593. 28 Li C Q, Cao Z J, Xie C, et al. Journal of Applied Polymer Science, 2019, 136(28), 47762. 29 Ranjbar Z, Yari H, Momen G. Surfaces and Interfaces, 2022, 33, 102282. 30 Xu W T, Yi P Y, Gao J, et al. ACS Applied Materials & Interfaces, 2019, 12(2), 3042. 31 Liu S Z, Zhang Y, Fan L Y, et al. Materials Reports, 2020, 34(17), 17099 (in Chinese). 刘帅卓, 张颖, 范雷倚, 等. 材料导报, 2020, 34(17), 17099. 32 Hoang A T, Nižetić S, Duong X Q, et al. Chemosphere, 2021, 277, 130274. 33 Latthe S S, Sutar R S, Kodag V S, et al. Progress in Organic Coatings, 2019, 128, 52. 34 Zhang X W, Zhou T, Liu J, et al. Applied Surface Science, 2021, 540, 148337. 35 Chen H, Jin Y Y, Lei L, et al. Applied Surface Science, 2018, 462, 149. 36 Chen X W, Wang M Y, Xin Y, et al. Surfaces and Interfaces, 2022, 31, 102022. 37 Xie C X, Lai X J, Li H Q, et al. Journal of Macromolecular Science, Part A, 2020, 57(10), 725.