Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21060116-6    https://doi.org/10.11896/cldb.21060116
  高分子与聚合物基复合材料 |
超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征
吕丹丹*, 李慕荣, 张伟钢
滁州学院材料与化学工程学院,安徽 滁州 239000
Fabrication and Performance Characterization of PDMS Modified Polyurethane/ Brass Composite Coating with Super-hydrophobicity
LYU Dandan*, LI Murong, ZHANG Weigang
College of Materials and Chemical Engineering, Chuzhou University, Chuzhou 239000, Anhui, China
下载:  全 文 ( PDF ) ( 22925KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以片状黄铜粉为功能颜料、纳米SiO2为微纳结构改性剂、聚二甲基硅氧烷(PDMS)改性聚氨酯(PU)为黏合剂,采用简单的玻璃棒刮涂法制得了一种同时具有超疏水性能和较低红外发射率的复合涂层,系统探讨了PDMS/PU质量比、总填料添加量(质量分数)及黄铜粉/纳米SiO2质量比对涂层性能的影响规律。结果表明:PDMS/PU配比对涂层附着力和疏水性能具有重要的影响,当PDMS/PU的质量比为1:9时,涂层具备突出的超疏水性能,附着力可达1级,水接触角和滚动角分别可达155°、5°。总填料添加量对涂层性能的影响明显,随着填料添加量的增加,涂层发射率有所增大,光泽度有所降低。当总填料添加量为50%时,涂层表面可形成明显的乳突状微纳粗糙结构,从而可使涂层具备突出的超疏水性能。黄铜粉/纳米SiO2配比会显著影响涂层的发射率和疏水性能,当黄铜粉/纳米SiO2的质量比为6.5:3.5时,涂层可具备良好的综合性能和突出的自清洁性能,涂层发射率可低至0.716,光泽度和附着力分别为1.8级、1级,水接触角和滚动角分别为151°、8°。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕丹丹
李慕荣
张伟钢
关键词:  复合涂层  低红外发射率  超疏水  自清洁  附着力  光泽度    
Abstract: A composite coating with super-hydrophobicity and low infrared emissivity was prepared by glass rod scraping method using flake brass powders, nano-SiO2 and polydimethylsiloxane (PDMS) modified polyurethane (PU) as functional pigments, micro-nano structural modifier and adhesive, respectively. The effects of the ratio (mass ratio) of PDMS to PU, the addition amount (quality score) of total fillers and the ratio (mass ratio) of brass powder to nano-SiO2 on the coating properties were systematically discussed. The results show that the mass ratio of PDMS to PU has an important influence on the adhesion strength and hydrophobic properties of the coating. When the mass ratio of PDMS to PU is 1:9, the coating has outstanding super-hydrophobic properties, the adhesion strength of the coating can reach 1 grade, the water contact angle and sliding angle can reach 155° and 5°, respectively. The total filler addition amount has a significant impact on the coating performance. With the increase of the filler addition amount, the emissivity of the coating increases and the glossiness decreases. When the total filler content is 50%, the coating surface can form an obvious papillary micro-nano rough structure, so that the coating has outstanding super-hydrophobic properties. The mass ratio of brass powder to nano-SiO2 can obviously affect the emissivity and hydrophobic properties of the coating. When the mass ratio of brass powder to nano-SiO2 is 6.5:3.5, the coating can have good overall performance and outstanding self-cleaning performance. At this time, the emissivity of the coating can be as low as 0.716;the glossiness and adhesion strength are grade 1.8 and grade 1, respectively;the water contact angle and sliding angle are 151° and 8°, respectively.
Key words:  composite coating    low infrared emissivity    super-hydrophobic    self-cleaning    adhesion strength    glossiness
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TN213  
基金资助: 国家自然科学基金(61705029);安徽省自然科学基金(1808085MF187);安徽省高校优秀青年人才支持计划重点项目(gxyqZD2020044);安徽省科技重大专项(202103a05020018);安徽省大学生创新训练计划项目(S202010377116);滁州学院大学生创新训练计划项目(2020CXXL116)
通讯作者:  * 吕丹丹,滁州学院材料与化学工程学院实验师。2006年河南科技学院化学工程系化学工程与工艺专业本科毕业,2013年安徽工业大学化学化工学院分析化学专业硕士毕业,2018年7月到滁州学院工作至今。目前主要从事特种功能涂层材料方面的研究工作。发表学术论文6篇。abczwg13@163.com   
引用本文:    
吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
LYU Dandan, LI Murong, ZHANG Weigang. Fabrication and Performance Characterization of PDMS Modified Polyurethane/ Brass Composite Coating with Super-hydrophobicity. Materials Reports, 2023, 37(4): 21060116-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060116  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21060116
1 Fang S J, Wang W, Yu X L, et al. Materials Letter, 2015, 143, 120.
2 Solovyev A A, Rabotkin S V, Kovsharov N F. Materials Science in Semiconductor Processing, 2015, 38, 373.
3 Wang L, Xu G Y, Liu C Y, et al. Surface and Coatings Technology, 2019, 357, 559.
4 Mao Z P, Yu X L, Zhang L P, et al. Vacuum, 2014, 104, 111.
5 Liu Z H, Ban G D, Ye S T, et al. Optical Materials Express, 2016, 6, 3716.
6 Guo T C, Xu G Y, Tan S J, et al. Journal of Alloys and Compounds, 2019, 804, 503.
7 Zhang W G, Lv D D. Materials Research Bulletin, 2020, 124, 110747.
8 Qi L, Weng X L, Yuan L, et al. Infrared Physics & Technology, 2020, 110, 103458.
9 Hu C, Xu G Y, Shen X M, et al. Applied Surface Science, 2010, 256, 3459.
10 Yan X X, Xu G Y. Surface & Coatings Technology, 2010, 205, 2307.
11 He L H, Zhao Y, Xing L Y, et al. Materials, 2018, 11, 1502.
12 Liu Z H, Ban G D, Ye S T, et al. Optical Materials Express, 2016, 6(12), 3716.
13 Wang K Z, Wang C X, Yin Y J, et al. Journal of Alloys and Compounds, 2017, 690, 741.
14 Wu G W, Yu D M. Progress in Organic Coatings, 2013, 76, 107.
15 Fantucci S, Serra V. Energy and Buildings, 2019, 182, 300.
16 Chen Y P, Xu G Y, Guo T C, et al. Science China Technological Science, 2012, 55(3), 623.
17 Pawar P G, Xing R M, Kambale R C, et al. Progress in Organic Coa-tings, 2017, 105, 235.
18 Satapathy M, Varshney P, Nanda D, et al. Surface & Coatings Technology, 2018, 341, 31.
19 Li C L, Sun Y C, Cheng M, et al. Chemical Engineering Journal, 2018, 333, 361.
20 Liu Y, Li S, Zhang J, et al. Chemical Engineering Journal, 2014, 248, 440.
21 Wang Z, Shen X P, Yan Y T, et al. Applied Surface Science, 2018, 450, 387.
22 Guo Yonggang, Geng Tie, Wu Haihong, et al. Chinese Journal of Materials Research, 2013, 27(4), 439(in Chinese).
郭永刚, 耿铁, 吴海宏, 等. 材料研究学报, 2013, 27(4), 439.
23 Hou Junwen, Cai Dongbao, Ye Xiangdong. Surface Technology, 2019, 48(2), 69(in Chinese).
侯俊文, 蔡东宝, 叶向东. 表面技术, 2019, 48(2), 69.
24 Zhong M Z, Zhang Y, Li X Q, et al. Surface & Coating Technology, 2018, 347, 191.
25 Zhang W G, Xu G Y, Ding R Y, et al. Materials Science and Engineering C, 2013, 33, 99.
[1] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[2] 卞灿星, 钱钰, 崔功军, 刘燕萍, 寇子明. 钇(Y)元素强化的CoCrNiFe基高温自润滑复合涂层的摩擦学性能[J]. 材料导报, 2022, 36(8): 21010202-8.
[3] 李格, 韩彬, 李美艳, 刘鹏, 李朝晖. 石墨烯增强金属基复合涂层的研究进展[J]. 材料导报, 2022, 36(8): 20080127-7.
[4] 陈文元, 谈辉, 程军, 朱圣宇, 杨军. 冷喷涂铜基复合涂层摩擦学性能研究进展与展望[J]. 材料导报, 2022, 36(7): 21080083-7.
[5] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[6] 杨福生, 王百祥, 张妍, 任永忠, 陈永哲, 杨武. 纳米银协同沙子构筑超疏水表面及其性能研究[J]. 材料导报, 2022, 36(6): 21010001-5.
[7] 王池嘉, 刘书佩, 王子华, 罗红欣. 防污涂层研究及应用新进展[J]. 材料导报, 2022, 36(23): 21020004-8.
[8] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[9] 盛奥, 姜昊基, 赵亚欣, 魏忠, 李昊, 贾昊, 王贺云. F-ZIF-90/PDMS混合基质膜的制备及强化乙醇传递过程的研究[J]. 材料导报, 2022, 36(17): 21030316-6.
[10] 刘晨, 丁德一, 李逸辰, 姚东东, 李天宇, 郑亚萍. 防冰材料研究进展[J]. 材料导报, 2022, 36(16): 20080061-7.
[11] 杜咪咪, 薛朝华, 郭小静, 贾顺田. 光致发热材料的超疏水化改性及其对光热转换性能的影响[J]. 材料导报, 2022, 36(15): 21010272-5.
[12] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[13] 唐宏, 董兵海, 艾虎. 透明超疏水涂层制备技术研究进展[J]. 材料导报, 2021, 35(Z1): 156-159.
[14] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[15] 鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed