Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21070015-6    https://doi.org/10.11896/cldb.21070015
  无机非金属及其复合材料 |
WO3/CuWO4复合薄膜的制备及光电化学性能
于舒睿, 杨继凯*, 杨雪, 王国政, 尹笑乾
长春理工大学物理学院, 长春 130022
Preparation and Photoelectrochemical Properties of WO3/CuWO4 Composite Film
YU Shurui, YANG Jikai*, YANG Xue, WANG Guozheng, YIN Xiaoqian
School of Physics, Changchun University of Science and Technology,Changchun 130022,China
下载:  全 文 ( PDF ) ( 11220KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以两步水热法成功制备了三维立体结构的WO3/CuWO4复合薄膜,通过调整CuWO4的水热时间得到了复合薄膜的最佳制备条件,并对WO3/CuWO4复合薄膜进行吸收光谱测试、光电流测试、光电催化测试和电化学阻抗测试。结果表明,所制备的WO3/CuWO4-5 h复合薄膜的带隙介于CuWO4和WO3之间,为2.44 eV,具有更宽的光谱响应范围;在1.5 V的偏压下,WO3/CuWO4-5 h复合薄膜表现出2.11 mA/cm2的高光电流密度;WO3/CuWO4-5 h复合薄膜对亚甲基蓝溶液的光电催化降解效率为58.5%,高于WO3薄膜(降解效率为41.4%);电化学阻抗谱表明,WO3/CuWO4薄膜电荷转移电阻比单一WO3薄膜小,对应更好的光电化学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于舒睿
杨继凯
杨雪
王国政
尹笑乾
关键词:  WO3  CuWO4  复合薄膜  光电流  光电催化    
Abstract: WO3/CuWO4 composite films with three-dimensional structure were successfully prepared by a two-step hydrothermal method. The optimal preparation conditions for the WO3/CuWO4 composite films were obtained by adjusting the hydrothermal time of CuWO4. The photoelectric performance parameters of WO3/CuWO4 composite films were obtained by absorption spectrum test, photocurrent test, photoelectrocatalysis test, and electrochemical impedance test. The results show that the band gap of WO3/CuWO4-5 h composite film was 2.44 eV between CuWO4 and WO3, which indicated a wider spectral response range. WO3/CuWO4-5 h composite film exhibited a high photocurrent density of 2.11 mA/cm2 at 1.5 V vs. Ag/AgCl. The photoelectrocatalysis degradation efficiency of methylene blue solution by WO3/CuWO4-5 h composite film was 58.5%, which was higher than that of the pure WO3 film (degradation efficiency was 41.4%). Electrochemical impedance spectroscopy showed that the charge transfer resistance of WO3/CuWO4 was less than that of pure WO3 film, corresponding to better photoelectrochemical performance.
Key words:  WO3    CuWO4    composite film    photocurrent    photoelectrocatalysis
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  O643  
基金资助: 国家自然科学基金(51502023; 11874091);吉林省科技厅研发项目(20200201077JC; 20190701024GH;20180201033GX; 20190302125GX);吉林省教育厅项目(JJKH20181103KJ; JJKH20190588KJ; JJKH20200777KJ)
通讯作者:  * 杨继凯,长春理工大学副教授,2012年毕业于东北师范大学,获得材料物理与化学专业博士学位,同年进入长春理工大学任教,主要从事光电催化、电致变色材料的研究。在国内外重要期刊发表文章40多篇,申报发明专利近10项。jikaiyang0625@163.com   
作者简介:  于舒睿,2019年6月毕业于长春理工大学,获得理学学士学位。现为长春理工大学物理学院硕士研究生,主要从事电致变色材料和器件方面的研究。
引用本文:    
于舒睿, 杨继凯, 杨雪, 王国政, 尹笑乾. WO3/CuWO4复合薄膜的制备及光电化学性能[J]. 材料导报, 2023, 37(4): 21070015-6.
YU Shurui, YANG Jikai, YANG Xue, WANG Guozheng, YIN Xiaoqian. Preparation and Photoelectrochemical Properties of WO3/CuWO4 Composite Film. Materials Reports, 2023, 37(4): 21070015-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070015  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21070015
1 Ye S S, Chen Y X, Yao X L, et al. Chemosphere, 2021, 273, 128503.
2 Yang L, Guo M, Song Z C, et al. Materials Reports, 2020, 34(Z1), 7(in Chinese).
杨露, 郭敏, 宋志成, 等. 材料导报, 2020, 34(Z1), 7.
3 Kangkun N, Ponchio C. Applied Surface Science, 2020, 526, 146686.
4 Zeng Q Y, Yu L L, Gao Y W, et al. Applied Catalysis B: Environmental, 2018, 238, 309.
5 Xie J L, Yang P P, Li C M. Materials Reports A:Review Papers, 2018, 32(4), 1037(in Chinese).
谢佳乐, 杨萍萍, 李长明. 材料导报:综述篇, 2018, 32(4), 1037.
6 Hu S Z, Wang F, Li Z, et al. Materials Reports, 2021, 35(8), 8011(in Chinese).
胡绍争, 王菲, 李政, 等. 材料导报, 2021, 35(8), 8011.
7 Sharma S, Pai M R, Kaur G, et al. Renewable Energy, 2019, 136, 1202.
8 Cai M Y, Fan P X, Long J Y, et al. ACS Applied Materials & Interfaces, 2017, 9(21), 17856.
9 Cheng X F, Leng W H, Liu D P, et al. Chemosphere, 2007, 68(10), 1976.
10 Georgieva J, Valova E, Armyanov S, et al. Journal of Hazardous Materials, 2012, 211, 30.
11 Liu Y S, Xi X L, Nie Z R, et al. Materials Science Forum, 2020, 993, 893.
12 Salimi R, Alvani A A S, Mei B T, et al. New Journal of Chemistry, 2019, 43(5), 2196.
13 Zhu Z F, Yan Y, Li J Q. Journal of Materials Science, 2016, 51(4), 2112.
14 He G J, Li J M, Li W Y, et al. Journal of Materials Chemistry A, 2015, 3(27), 14272.
15 Karthika A, Karuppasamy P, Selvarajan S, et al. Ultrasonics Sonochemistry, 2019, 55, 196.
16 Kumar R D, Andou Y, Sathish M, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(3), 2926.
17 Sun B, Jia X J, Wu J H, et al. Solid State Communications, 2015, 223, 1.
18 Chen H H, Xiong X Q, Hao L L, et al. Applied Surface Science, 2016, 389, 491.
19 Yourey J E, Kurtz J B, Bartlett B M. The Journal of Physical Chemistry C, 2012, 116(4), 3200.
20 Zhan F Q, Li J, Li W Z, et al. International Journal of Hydrogen Energy, 2015, 40(20), 6512.
21 Nam K M, Cheon E A, Shin W J, et al. Langmuir, 2015, 31(39), 10897.
22 Gaillard N, Chang Y, Deangelis A, et al. International Journal of Hydrogen Energy, 2013, 38(8), 3166.
23 Yourey J E, Bartlett B M. Journal of Materials Chemistry, 2011, 21(21), 7651.
24 Lopez E, Cleofe V, Boado K, et al. Key Engineering Materials, 2019, 4845, 285.
25 Hunge Y M, Yadav A A, Mahadik M A, et al. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 273.
26 Zhang W D, Jiang L C, Ye J S. The Journal of Physical Chemistry C, 2009, 113(36), 16247.
27 Wang H, Liang Y H, Liu L, et al. Journal of Hazardous Materials, 2018, 344, 369.
28 Yang J, Li W Z, Li J, et al. Journal of Materials Chemistry, 2012, 22(34), 17744.
29 Wang W K, Zhu W, Mao L, et al. Journal of Colloid and Interface Science, 2019, 557, 227.
[1] 唐春, 吴梦南, 段超, 余堂杰, 于姗, 周莹. 基于光电催化的硫化氢高值利用研究进展[J]. 材料导报, 2023, 37(3): 22020097-7.
[2] 张浩源, 刘敬肖, 史非, 刘素花, 宋昕. Ptn-CsxWO3/PNIPAM热致调光材料的制备及其隔热性能研究[J]. 材料导报, 2022, 36(1): 20100129-5.
[3] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[4] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[5] 何亭睿, 王一平, 李雄杰, 陈朋, 胡悫睿, 杨颖, 宁洪龙. 可交联型P(VDF-CTFE-DB)/PMN-PT-Sm纳米复合薄膜的制备及介电和储能性能[J]. 材料导报, 2020, 34(18): 18152-18158.
[6] 黄文成, 张锦国, 袁军, 刘江文. Mg/Nb复合薄膜的结构调控及其对脱氢温度的影响[J]. 《材料导报》期刊社, 2018, 32(7): 1084-1087.
[7] 毛龙, 刘跃军, 白永康, 刘小超. 原位接枝聚合改性LDHs/PCL纳米复合薄膜的制备及氧气阻隔性能*[J]. 《材料导报》期刊社, 2017, 31(18): 43-48.
[8] 张丽娜, 苏琪, 杨高玲, 刘柏雄, 杨斌. WO3基纳米材料的可控合成及其功能化应用*[J]. 《材料导报》期刊社, 2017, 31(11): 20-28.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed