Abstract: WO3/CuWO4 composite films with three-dimensional structure were successfully prepared by a two-step hydrothermal method. The optimal preparation conditions for the WO3/CuWO4 composite films were obtained by adjusting the hydrothermal time of CuWO4. The photoelectric performance parameters of WO3/CuWO4 composite films were obtained by absorption spectrum test, photocurrent test, photoelectrocatalysis test, and electrochemical impedance test. The results show that the band gap of WO3/CuWO4-5 h composite film was 2.44 eV between CuWO4 and WO3, which indicated a wider spectral response range. WO3/CuWO4-5 h composite film exhibited a high photocurrent density of 2.11 mA/cm2 at 1.5 V vs. Ag/AgCl. The photoelectrocatalysis degradation efficiency of methylene blue solution by WO3/CuWO4-5 h composite film was 58.5%, which was higher than that of the pure WO3 film (degradation efficiency was 41.4%). Electrochemical impedance spectroscopy showed that the charge transfer resistance of WO3/CuWO4 was less than that of pure WO3 film, corresponding to better photoelectrochemical performance.
1 Ye S S, Chen Y X, Yao X L, et al. Chemosphere, 2021, 273, 128503. 2 Yang L, Guo M, Song Z C, et al. Materials Reports, 2020, 34(Z1), 7(in Chinese). 杨露, 郭敏, 宋志成, 等. 材料导报, 2020, 34(Z1), 7. 3 Kangkun N, Ponchio C. Applied Surface Science, 2020, 526, 146686. 4 Zeng Q Y, Yu L L, Gao Y W, et al. Applied Catalysis B: Environmental, 2018, 238, 309. 5 Xie J L, Yang P P, Li C M. Materials Reports A:Review Papers, 2018, 32(4), 1037(in Chinese). 谢佳乐, 杨萍萍, 李长明. 材料导报:综述篇, 2018, 32(4), 1037. 6 Hu S Z, Wang F, Li Z, et al. Materials Reports, 2021, 35(8), 8011(in Chinese). 胡绍争, 王菲, 李政, 等. 材料导报, 2021, 35(8), 8011. 7 Sharma S, Pai M R, Kaur G, et al. Renewable Energy, 2019, 136, 1202. 8 Cai M Y, Fan P X, Long J Y, et al. ACS Applied Materials & Interfaces, 2017, 9(21), 17856. 9 Cheng X F, Leng W H, Liu D P, et al. Chemosphere, 2007, 68(10), 1976. 10 Georgieva J, Valova E, Armyanov S, et al. Journal of Hazardous Materials, 2012, 211, 30. 11 Liu Y S, Xi X L, Nie Z R, et al. Materials Science Forum, 2020, 993, 893. 12 Salimi R, Alvani A A S, Mei B T, et al. New Journal of Chemistry, 2019, 43(5), 2196. 13 Zhu Z F, Yan Y, Li J Q. Journal of Materials Science, 2016, 51(4), 2112. 14 He G J, Li J M, Li W Y, et al. Journal of Materials Chemistry A, 2015, 3(27), 14272. 15 Karthika A, Karuppasamy P, Selvarajan S, et al. Ultrasonics Sonochemistry, 2019, 55, 196. 16 Kumar R D, Andou Y, Sathish M, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(3), 2926. 17 Sun B, Jia X J, Wu J H, et al. Solid State Communications, 2015, 223, 1. 18 Chen H H, Xiong X Q, Hao L L, et al. Applied Surface Science, 2016, 389, 491. 19 Yourey J E, Kurtz J B, Bartlett B M. The Journal of Physical Chemistry C, 2012, 116(4), 3200. 20 Zhan F Q, Li J, Li W Z, et al. International Journal of Hydrogen Energy, 2015, 40(20), 6512. 21 Nam K M, Cheon E A, Shin W J, et al. Langmuir, 2015, 31(39), 10897. 22 Gaillard N, Chang Y, Deangelis A, et al. International Journal of Hydrogen Energy, 2013, 38(8), 3166. 23 Yourey J E, Bartlett B M. Journal of Materials Chemistry, 2011, 21(21), 7651. 24 Lopez E, Cleofe V, Boado K, et al. Key Engineering Materials, 2019, 4845, 285. 25 Hunge Y M, Yadav A A, Mahadik M A, et al. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 273. 26 Zhang W D, Jiang L C, Ye J S. The Journal of Physical Chemistry C, 2009, 113(36), 16247. 27 Wang H, Liang Y H, Liu L, et al. Journal of Hazardous Materials, 2018, 344, 369. 28 Yang J, Li W Z, Li J, et al. Journal of Materials Chemistry, 2012, 22(34), 17744. 29 Wang W K, Zhu W, Mao L, et al. Journal of Colloid and Interface Science, 2019, 557, 227.