Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 20-28    https://doi.org/10.11896/j.issn.1005-023X.2017.011.003
  材料综述 |
WO3基纳米材料的可控合成及其功能化应用*
张丽娜1, 苏琪2, 杨高玲2, 刘柏雄3, 杨斌3
1 江西理工大学应用科技学院,赣州341000;
2 江西理工大学材料科学与工程学院,赣州341000;
3 江西理工大学钨资源高效开发及应用技术教育部工程研究中心,赣州 341000
Review on Controlled-synthesis and Functional Application of Nano-WO3 Based Materials
ZHANG Lina1, SU Qi2, YANG Gaoling2, LIU Baixiong3, YANG Bin3
1 College of Applied Science, Jiangxi University of Science and Technology, Ganzhou 341000;
2 School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000;
3 Engineering Research Center of High-efficiency Development and Application Technology of Tungsten Resources, Jiangxi University of Science and Technology, Ganzhou 341000
下载:  全 文 ( PDF ) ( 2249KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 WO3基纳米材料具有光催化降解、光解水、电致变色、热致变色和光致变色等特性,在光催化剂、新能源利用、智能窗口、传感器和平板显示器等领域有广阔的应用前景。详细介绍了喷雾干燥法、溶胶-凝胶法、水热法和模板法在制备WO3基纳米材料方面的研究进展,同时分析了各制备方法目前所存在的问题。综述了WO3基纳米材料近年来在催化降解、污染物吸附、光解水制氢、电致变色等方面应用的研究现状,分析了其未来的应用和发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张丽娜
苏琪
杨高玲
刘柏雄
杨斌
关键词:  WO3  纳米材料  可控合成  模板法    
Abstract: Nano-WO3 based materials have many unique properties, such as photodegradation, water splitting, photochromism, electrochromism, etc. Therefore, nano-WO3 based materials are potentially used in photocatalysis, new energy resources utilization, smart windows, sensing capabilities and flat-panel display. Research achievements of spray drying method, sol-gel method, hydrothermal method and template method, which are widely used in synthesis of nano-WO3 based materials, are introduced in detail. And the existing problems of these processes are analyzed. Furthermore, the progress of nano-WO3 based materials in photodegradation, pollutants adsorption, water splitting and electrochromism in recent years are reviewed in this paper.An outlook over application and development prospect of nano-WO3 based materials is given at last.
Key words:  WO3    nano-materials    controlled-synthesis    template method
               出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51664023);江西省教育厅基金(KJLD13041;GJJ14409;GJJ150688);江西省科技厅基金(20142BAB216010)
通讯作者:  刘柏雄:通讯作者,男,1979年生,博士,副教授,研究方向为纳米材料 E-mail: liu_micro@126.com   
作者简介:  张丽娜:女,1977年生,硕士,讲师,研究方向为净水材料
引用本文:    
张丽娜, 苏琪, 杨高玲, 刘柏雄, 杨斌. WO3基纳米材料的可控合成及其功能化应用*[J]. 《材料导报》期刊社, 2017, 31(11): 20-28.
ZHANG Lina, SU Qi, YANG Gaoling, LIU Baixiong, YANG Bin. Review on Controlled-synthesis and Functional Application of Nano-WO3 Based Materials. Materials Reports, 2017, 31(11): 20-28.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.003  或          http://www.mater-rep.com/CN/Y2017/V31/I11/20
1 Masahiro S, Keisuke S, Hironobu K, et al. Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation [J]. J Mater Chem,2010,20:1811.
2 He H C, Berglund S P, Xiao P, et al. Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced photoelectrochemical performance [J]. J Mater Chem A,2013,1:12826.
3 White C M, Jang J S, Lee S H, et al. Photocatalytic activity and photoelectrochemical property of nano-WO3 powders made by hot-wire chemical vapor deposition [J]. Electrochem Solid State Lett,2010,13:120.
4 Liu Y Y, Li W Z, Han S, et al. Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light [J]. Appl Surf Sci,2012,258: 5038.
5 Liu B X, Wang J S, Wu J S, et al. Proton exchange growth to mesoporous WO3·0.33H2O structure with highly photochromic sensitivity [J]. Mater Lett,2013,91:334.
6 Lu Y Y, Liu G, Zhang J, et al. Fabrication of a monoclinic/hexagonal junction in WO3 and its enhanced photocatalytic degradation of rhodamine B[J]. Chinese J Catal, 2016, 37(3):349(in Chinese).
卢圆圆, 刘果, 张静, 等. WO3 中单斜相/六方相异相结的构建及提高光催化降解罗丹明 B 活性[J]. 催化学报,2016,37(3):349.
7 Lv R J, Zhang F X, Li Y J, et al. Solvothermal synthesis of mesoporous tungsten oxide materials with special morphology and their adsorptive properties[J]. Appl Chem,2013, 30(11):1338(in Chinese).
吕仁江, 张福祥, 李英杰, 等. 溶剂热合成具有特殊形貌的介孔 WO3 材料及其吸附性能[J]. 应用化学,2013,30(11):1338.
8 Fang C, Wang H, Shi S Q. Research progresss of electrochromic performances of WO3[J]. Acta Phys Sin,2016,65(16):168201(in Chinese).
方成, 汪洪, 施思齐. 氧化钨电致变色性能的研究进展[J]. 物理学报,2016,65(16):168201.
9 Feng Z P, Wei F, Zhao H B, et al. Electrochromic behavior of WO3 thin films prepared by dadio frequency magnetron sputtering[J]. Rare Met,2016,40(9):902(in Chinese).
冯志鹏, 魏峰, 赵鸿滨, 等. 射频磁控溅射 WO3 薄膜电致变色性能研究[J]. 稀有金属,2016, 40(9):902.
10 Liu B X, Wang J S, Li H Y, et al. Hollow mesoporous WO3 spheres: Preparation and photocatalytic activity [J]. Inorg Chem,2012,28:465.
11 Yang T S, Zhang Y, Li C. Large scale production of spherical WO3 powder with ultrasonic spray pyrolysis assisted by sol-gel method for hydrogen detection [J]. Ceram Int,2014,40:1765.
12 Choi Y G, Sakai G, Shimanoe K, et al. Wet process-prepared thick films of WO3 for NO2 sensing [J]. Sensor Actuators B: Chem,2003,95:258.
13 Tong M, Dai G, Gao D. WO3 Thin film sensor prepared by sol-gel technique and its low-temperature sensing properties to trimethy-lamine [J].Mater Chem Phys,2001,69:176.
14 Li C P, Lin F, Richards R M, et al. Ultrasonic spray deposition of high performance WO3 films using template-assisted sol-gel chemistry [J]. Electrochem Commun,2012,25:62.
15 Deepa M, Sharma R, Basu A, et al. Effect of oxalic acid dihydrate on optical and electrochemical properties of sol-gel derived amorphous electrochromic WO3 films [J].Electrochim Acta,2005,50:3545.
16 Feng W, Wu G M, Gao G H. Ordered mesoporous WO3 film with outstanding gasochromic properties [J]. J Mater Chem A,2014,2:585.
17 Breedon M, Spizzirii P, Taylor M, et al. Synthesis of nanostructured tungsten oxide thin film: A simple, controllable, inexpensive, aqueous sol-gel method [J]. Cryst Growth Des,2010,10:430.
18 Wang H R, Gao G H, Wu G M.TiO2-doped WO3 gasochromic thin films produced by sol-gel technique with high hydrogen-sensing pro-perties[J].Rare Met Mater Eng,2016(S1):325(in Chinese).
王浩然, 高国华, 吴广明,等. 溶胶-凝胶法制备高氢气敏感性的TiO2复合WO3薄膜(英文)[J]. 稀有金属材料与工程,2016(S1):325.
19 Su X, Xiao F, Li Y, et al. Synthesis of uniform WO3 square nanoplates via an organic acid-assisted hydrothermal process [J]. Mater Lett,2010,64:1232.
20 Patil V B, Adhyapak P V, Suryavanshi S S, et al. Oxalic acid induced hydrothermal synthesis of single crystalline tungsten oxied nanorods [J]. J Alloy Compd,2014,590:283.
21 Park S Y, Lee J M, Noh C, et al. Colloidal approach for tungsten oxide nanorod-based electrochromic systems with highly improved response times and color efficiencies [J]. J Mater Chem,2009,19:7959.
22 Phuruangrat A, Ham D J, Hong S J, et al. Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction [J]. J Mater Chem,2009,20:1683.
23 Lee C Y, Kim S J, Hwang I S, et al. Glucose-mediated hydrothermal synthesis and gas sensing characteristics of WO3 hollow microspheres[J].Sensor Actuators B: Chem,2009,142:236.
24 Xi G C, Ouyang S X, Li P, et al. Near-infrared adsorption, photoluminescence, and photochemical reduction of carbon dioxide [J]. Angew Chem Int Ed,2012,51:2395.
25 Guo C S, Yin S, Yan M, et al. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties [J]. Inorg Chem,2012,51:4763.
26 Zhao Z G, Miyauchi M. Shape modulation of tungstic acid and tungsten oxide hollow structures [J]. J Phys Chem C,2009,113:6539.
27 Zhang H J. Study on hydrothermal synthesis of WO3 nanostructures and their gas-sensing properties[D]. Chongqing:Chongqing University,2013(in Chinese).
张合静. 水热法制备纳米三氧化钨及其气敏性能研究[D]. 重庆:重庆大学,2013.
28 Li J, Li L J, Gao Y F, et al. Preparation of nanomaterials employing template method[J]. Mater Rev,2011,25(S2):5(in Chinese).
李静, 李利军, 高艳芳, 等. 模板法制备纳米材料[J]. 材料导报,2011,25(专辑18):5.
29 Zhao Z G, Miyauchi M. nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts [J]. Angew Chem Int Ed,2008,120:7159.
30 Zhang Y, Yuan J, Le J, et al. Structural and electrochromic properties of tungsten oxide prepared by surfactant-assisted process [J]. Sol Energ Mater Sol Cells,2009,93:1338.
31 Ozkan E, Lee S H, Liu P, et al. Electrochromic and optical properties of mesoporous tungsten oxide films [J]. Solid State Ion,2002,149:139.
32 Sun S, Wang W, Zeng S, et al. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation[J]. J Hazard Mater,2010, 178:427.
33 Li H, Theriault J, Rousselle B, et al. Facile fabrication of crack free large-area 2D WO3 inverse opal films by a ‘dynamic hard-template’ strategy on ITO substrates [J]. Chem Commun,2014, 50:2184.
34 Bi D Q, Xu Y M. Influence of iron oxide doping on the photocataly-tic degradation of organic dye X3B over tungsten oxide[J]. Acta Phys Chim Sin,2012,28(7):1777(in Chinese).
毕冬琴, 许宜铭. Fe2O3 掺杂对 WO3 光催化降解有机染料 X3B 的影响[J]. 物理化学学报, 2012, 28(7):1777.
35 Zhong L Q, Liu Y J, Xu Y L, et al. Photocatalytic degradation of organic dye with H3PW12O40/ZrO2-WO3 sensitized by H2O2[J]. Fine Chem,2013,30(12):1413 (in Chinese).
钟立群, 刘艳举, 徐玉林, 等. H2O2 处理 H3PW12O40/ZrO2-WO3 光催化降解有机染料[J]. 精细化工,2013,30(12):1413.
36 Nandiyanto A B, Arutanti O, Ogi T, et al. Synthesis of spherical macroporous WO3 particles and their high photocatalytic perfor-mance [J]. Chem Eng Sci,2013,101:523.
37 Liu B X, Wang J S, Li H Y, et al. Facile synthesis of hierarchical hollow mesoporous Ag/WO3 spheres with high photocatalytic performance [J]. J Nanosci Nanotechnol,2013,13:4117.
38 Liu B X, Wang J S, Wu J S, et al. Controlled fabrication of hierarchical WO3 hydrates with excellent adsorption performance [J]. J Mater Chem A,2014,2:1947.
39 Shi J C, Hu G J, Cong R, et al. Controllable synthesis of WO3·nH2O microcrystals with various morphologies by a facile inorganic route and their photocatalytic activities [J]. New J Chem,2013, 37:1538.
40 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37.
41 Hodes G, Cahen D, Manassen J. Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC) [J].Nature,1976,260:312.
42 Abe R, Shinmei K, Koumura N, et al. Visible-light induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/lodide shuttle redox mediator[J]. J Am Chem Soc,2013,135:16872.
43 Vito C, Stefano C, Roberto A. Efficient photoelectrochemical water splitting by anodically grown WO3 electrodes [J]. Langmuir,2011,27:7276.
44 Su J Z, Guo L J, Bao N Z. Nanostructure WO3/BiVO4 heterojunction films for efficient photoelectronchemical water splitting [J]. Nano Lett,2011,11:1928.
45 Abe R, Higashi M, Domen K. Overall water splitting under visible light through a two-step photoexcitation between TaON and WO3 in the presence of an iodate-iodide shuttle redox mediator [J]. Chem Sus Chem,2011,4:228.
46 Tanaka A, Hashimoto K, Kominami H. Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface Plasmon resonance and band-gap excitation [J]. J Am Chem Soc,2014,136:586.
47 Xu N, Shen X D, Cui S. Progress and potential application of electrochromic materials[J]. Rare Earth,2010(4):610(in Chinese).
徐娜, 沈晓冬, 崔升. 电致变色材料的研究进展及发展前景[J]. 稀有金属,2010(4):610.
48 Jiao Z H, Wang X, Wang J M, et al. Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance[J]. Chem Commun, 2012,48:365.
49 Chen H C, Jan D J, Chen C H, et al. Bond and electrochromic pro-perties of WO3 films deposited with horizontal DC, pulsed DC, and RF sputtering [J]. Electrochim Acta,2013,93:307.
[1] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[2] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[3] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[4] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[5] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[6] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[7] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[8] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[9] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[10] 安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
[11] 张腾, 唐天宇, 侯仰龙. 面向锂硫电池的高负载量碳硫复合正极材料研究进展[J]. 材料导报, 2019, 33(1): 90-102.
[12] 刘云子,张伟,宋占永. 金属纳米颗粒导电墨水制备与后处理工艺的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 391-397.
[13] 管庆顺,李建,宋如愿,徐朝阳,吴伟兵,景宜,戴红旗,房桂干. 基于纳米材料的气凝胶制备及应用[J]. 《材料导报》期刊社, 2018, 32(3): 384-390.
[14] 宋晔, 缪远玲, 孟月东, 王奇. 利用等离子体技术制备和改性碳基纳米材料的研究进展[J]. 材料导报, 2018, 32(19): 3295-3303.
[15] 董奇志, 万汉生, 曾文霞, 余淑敏, 郭灿城, 余刚. 改性碳纳米材料在低温燃料电池中的应用*[J]. CLDB, 2017, 31(9): 81-89.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed