Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 22020097-7    https://doi.org/10.11896/cldb.22020097
  无机非金属及其复合材料 |
基于光电催化的硫化氢高值利用研究进展
唐春1,2,*, 吴梦南2, 段超2, 余堂杰2, 于姗2, 周莹1,2,*
1 西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
2 西南石油大学新能源与材料学院,成都 610500
Research Progress of High-value Utilization of Hydrogen Sulfide Based on Photoelectrocatalysis
TANG Chun1,2,*, WU Mengnan2, DUAN Chao2, YU Tangjie2, YU Shan2, ZHOU Ying1,2,*
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
2 School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 5149KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 油气田的开采和石油化工的生产过程中存在大量剧毒硫化氢(H2S)气体。传统处理H2S的方法是克劳斯工艺,该工艺只能提取H2S中的硫元素,潜在的氢能直接以水的形式排放,从而造成巨大的能源浪费。因此,开发与设计出能够实现硫化氢高值利用的新技术已迫在眉睫。光电催化技术是一种能够实现将硫化氢同时转化为氢能与硫化工产品的新型绿色低碳技术,目前已被广泛研究。然而,光电催化H2S走向实际应用的挑战主要在于开发抗硫毒化的高活性光电催化材料和调控硫氧化反应实现高附加值产品的定向转化。因此,本文从光电催化H2S的反应原理、反应类型、高活性H2S分解光电材料构筑策略和H2S耦合利用四方面进行概述,指出目前光电催化H2S高值利用研究体系存在的问题并对未来发展方向进行了展望,以期为光电催化H2S高值利用的发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐春
吴梦南
段超
余堂杰
于姗
周莹
关键词:  光电催化  硫化氢  氢能  硫化工产品    
Abstract: Hydrogen sulfide (H2S) is a toxic gas widely generated in oil and gas fields and the petrochemical industry. The traditional Claus process not only consumes avast amount of energy but also does not reclaim the hydrogen energy stored in H2S. Hence it is imminent to design new technology to achieve the high-value utilization of H2S. Photoelectrocatalysis is a green and low-carbon technology that realizes the simultaneous conversion of H2S into hydrogen energy and sulfur chemical products. However, the development of photoelectrocatalysts with high activity and poisoning resistance and value-added chemicals product obtained from the sulfur oxidation reaction are still tremendous challenges. Therefore, this review introduces the reaction principle, reaction types, photoelectrocatalyst design strategies, and H2S coupling reaction systems. The research challenges and prospects associated with the photoelectrocatalytic splitting of H2S are also provided, thus providing guidance to researchers in this field.
Key words:  photoelectrocatalysis    hydrogen sulfide    hydrogen energy    sulfur chemical product
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  O643.3  
  O646  
基金资助: 国家自然科学基金(22178291;22109132);四川省重点研发项目(2022YFSY0052);西南石油大学启航计划(2021QHZ014)
通讯作者:  *tangchun@swpu.edu.cn;yzhou@swpu.edu.cn,唐春,西南石油大学新能源与材料学院副研究员、硕士研究生导师。2013年在西华师范大学获得学士学位,2016年在西华师范大学获得硕士学位,2019年在西南大学获得博士学位。主要从事氢能与电催化制氢研究。在Angewandte Chemie International Edition、Advanced Materials、Nano Letter等期刊发表SCI论文30余篇,7篇论文入选ESI高被引论文,论文他引4 600余次,单篇最高引用超过1 000次。
周莹,西南石油大学新能源与材料学院教授、博士研究生导师。2004年在中南大学获得无机非金属材料学士学位,2007年在中国科学院上海光学精密机械研究所获得材料学硕士学位,2010年在瑞士苏黎世大学(UZH)获得材料化学博士学位。长期从事油气资源清洁利用与污染治理材料研究,入选国家百千万人才工程人选、“长江学者奖励计划”青年学者、德国洪堡学者、日本JSPS邀请学者、四川省学术与技术带头人、四川省有突出贡献的优秀专家等,受聘为日本京都大学讲座教授等。在《科学通报》《中国科学化学》、Nature Communications、Angewandte Chemie International Edition、ACS Catalysis等期刊发表论文130余篇,被正面引用7 000多次,H因子为50,17篇论文入选ESI高被引论文,授权中国发明专利20项、美国发明专利1项。获得侯德榜化工科学技术青年奖、霍英东教育基金会青年教师奖二等奖、中国石油和化学工业联合会青年科技突出贡献奖。   
引用本文:    
唐春, 吴梦南, 段超, 余堂杰, 于姗, 周莹. 基于光电催化的硫化氢高值利用研究进展[J]. 材料导报, 2023, 37(3): 22020097-7.
TANG Chun, WU Mengnan, DUAN Chao, YU Tangjie, YU Shan, ZHOU Ying. Research Progress of High-value Utilization of Hydrogen Sulfide Based on Photoelectrocatalysis. Materials Reports, 2023, 37(3): 22020097-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020097  或          http://www.mater-rep.com/CN/Y2023/V37/I3/22020097
1 Xie Z H, Yu S, Fan X B, et al.Journal of Energy Chemistry, 2021, 52, 234.
2 Yu S, Xie Z H, Ran M X, et al.Journal of Colloid and Interface Science, 2020, 573, 71.
3 Orme C J, Stewart F F.Journal of Membrane Science, 2005, 253(1-2), 243.
4 Jia A L.Natural Gas Industry B, 2018, 5(6), 547.
5 Dan M, Yu S, Li Y, et al.Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 42, 100339.
6 Al-Shamma L M, Naman S A.International Journal of Hydrogen Energy, 1990, 15(1), 1.
7 Reshetenko T V, Khairulin S R, Ismagilov Z R, et al.International Journal of Hydrogen Energy, 2002, 27(4), 387.
8 Mizuta S, Kondo W, Fujii K, et al.Industrial & Engineering Chemistry Research, 1991, 30(7), 1601.
9 Huang H, Yu Y, Chung K H. Energy & Fuels, 2009, 23(5), 4420.
10 Kalina D W, Maas E T. International Journal of Hydrogen Energy, 1985, 10(3), 157.
11 Duan C, Tang C, Wu M N, et al.Natural Gas Chemicals-C1 Chemistry and Chemicals, 2021(S1), 24 (in Chinese).
段超, 唐春, 吴梦南, 等. 天然气化工-C1化学与化工, 2021(S1), 24.
12 Dan M, Wu F, Xiang J L, et al.Chemical Engineering Journal, 2021, 423, 130201.
13 Yu S, Wu F, Zou P, et al.Chemical Communications, 2020, 56(91), 14227.
14 Yan H J, Yang J H, Ma G J, et al.Journal of Catalysis, 2009, 266(2), 165.
15 Bai X F, Cao Y, Wu W.Renewable Energy, 2011, 36(10), 2589.
16 Zhao G B, John S, Zhang J J, et al.Chemical Engineering Science, 2007, 62(8), 2216.
17 Reddy E L, Karuppiah J, Biju V M, et al. International Journal of Energy Research, 2013, 37(11), 1280.
18 Zhao L, Wang Y, Sun Z, et al. Green Chemistry, 2014, 16(5), 2619.
19 Bedoya-Lora F, Hankin A, Kelsall G H.Electrochemistry Communications, 2016, 68, 19.
20 Bedoya-Lora F E, Hankin A, Kelsall G H.Electrochimica Acta, 2019, 317, 384.
21 Shiina H, Oya M, Yamashita K, et al.Journal of Physical Chemistry, 1996, 100(6), 2136.
22 Fujishima A, Honda K. Nature, 1972, 238(5358), 37.
23 Naman S A, Aliwi S M, Al-Emara K.International Journal of Hydrogen Energy, 1986, 11(1), 33.
24 Yao T T, An X R, Han H X, et al.Advanced Energy Materials, 2018, 8, 1800210.
25 Bedoya-Lora F E, Hankin A, Kelsall G H.Electrochimica Acta, 2019, 314, 40.
26 Ma W G, Han J F, Yu W, et al. ACS Catalysis, 2016, 6(9), 6198.
27 Kainthla R C, Bockris J O.International Journal of Hydrogen Energy, 1987, 12, 23.
28 Zong X, Han J F, Seger B, et al.Angewandte Chemie International Edition, 2014, 126(17), 4488.
29 Zhou Q W, Shen Z H, Zhu C, et al.Advanced Materials, 2018, 30, 1800140.
30 Li J, Chen C B, Wang D D, et al.ACS Sustainable Chemistry & Enginee-ring, 2018, 6(8), 9591.
31 Qiao L, Bai J, Luo T, et al.Applied Catalysis B: Environmental, 2018, 238, 491.
32 Oladipo A A, Vaziri R, Mizwari Z M, et al.International Journal of Hydrogen Energy, 2020, 45(32), 15831.
33 Bai J, Zhang B, Li J H, et al.Frontiers in Energy, 2021, 15(3), 744.
34 Luo T, Bai J, Li J H, et al.Environmental Science & Technology, 2017, 51(21), 12965.
35 Zong X, Chen H J, Seger B, et al.Energy & Environmental Science, 2014, 7, 3347.
36 Bedoya-Lora F E, Hankin A, Holmes-Gentle I, et al.Electrochimica Acta, 2017, 251, 1.
37 Zhao H Y, Li X, Cai M K, et al. Advanced Energy Materials, 2021, 11(31), 2101230.
38 Guo H, Luo B, Wang J, et al.Journal of Materials Chemistry A, 2020, 8, 24655.
39 Yang X, Liu R, Du C, et al. ACS Applied Materials&Interfaces, 2014, 6(15), 12005.
40 Yang X, Du C, Liu R, et al.Journal of Catalysis, 2013, 304(8), 86.
41 Zhang M, Guan J, Tu Y C, et al. Energy & Environmental Science, 2020, 13, 119.
42 Edwards J K, Solsona B, Edwin N N, et al.Science, 2009, 323(5917), 1037.
43 Lunsford J H.Journal of Catalysis, 2003, 216(1-2), 455.
44 Campos-Martin J M, Blanco-Brieva G, Fierro J.Cheminform, 2006, 45(42), 6962.
45 Zhu M, Ge Q, Zhu X.Transactions of Tianjin University, 2020, 26(3), 16.
46 Tan L, Xu S M, Wang Z L, et al.Angewandte Chemie International Edition, 2019, 58(34), 11860.
47 Zhao Y F, Zhao Y X, Waterhouse G I N, et al.Advanced Materials, 2017, 29(42), 1703828.
48 Liu W J, Dang L N, Xu Z R, et al.ACS Catalysis, 2018, 8(6), 5533.
[1] 高助威, 李小高, 刘钟馨, 饶健民. 氢燃料电池汽车的研究现状及发展趋势[J]. 材料导报, 2022, 36(14): 21060046-8.
[2] 张峙, 李飞, 胡琳琪, 郑安应, 佘跃惠, 张文达. 油气工业生物及化学硫化氢清除剂研究进展[J]. 材料导报, 2021, 35(17): 17185-17189.
[3] 谢旭豪, 许胜超, 徐志勇, 赵文波. 硫醇类化合物合成工艺与方法[J]. 材料导报, 2020, 34(7): 7168-7176.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed