Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17185-17189    https://doi.org/10.11896/cldb.20080113
  无机非金属及其复合材料 |
油气工业生物及化学硫化氢清除剂研究进展
张峙1, 李飞1, 胡琳琪2, 郑安应2, 佘跃惠2, 张文达2
1 中海石油(中国)有限公司湛江分公司,湛江 524000
2 长江大学石油工程学院,武汉 430100
Recent Research Progresses of Biological and Chemical H2S Scavengers in the Oil and Gas Industry
ZHANG Shi1, LI Fei1, HU Linqi2, ZHENG Anying2, SHE Yuehui2, ZHANG Wenda2
1 Zhanjiang Branch, CNOOC, Zhanjiang 524000, China
2 School of Petroleum Engineering, Yangtze University, Wuhan 430100, China
下载:  全 文 ( PDF ) ( 2415KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在油气工业,硫化氢具有剧毒和强腐蚀性,会威胁人员安全,破坏设备和管道,必须及时清除。其中最常用的是化学清除剂,其与水/油/气相中的硫化氢结合,可转化为无毒、腐蚀性较弱、易于清除的物质。
对于酸性气体,可以直接添加化学清除剂,也可以通过吸收或吸附等方法处理。此外,在钻井液等石油工程领域,亦广泛使用吸附型硫化氢清除剂。研究表明,活性纳米材料(NASS)和生物酶制剂是新型的高效硫化氢清除剂。NASS通过先进化学纳米技术工艺制造,无毒、无害,具有比表面积大、孔隙率高、形态独特、附加表面官能团等特性,且其反应活性高、化学选择性强,能够吸附各种有害化学物质。由于NASS的化学反应活性中心集中在更大的表面积上,且有更高的孔隙率,可将清除剂有效时间延长4~6倍。生物酶制剂是利用重组DNA和蛋白质表达技术开发的新颖的硫化氢清除剂。它是通过克隆嗜热菌的cDNA序列,并在合适载体中编码和表达,获得的一种功能蛋白质。实验室和现场试验表明,在盐水、原油和混合液中,生物酶清除剂能有效降低硫化氢,去除率为72%~90%。
本文总结了油气工业中各种硫化氢清除技术,以及存在的问题和解决办法,指出应重点研发完全可再生的吸附清除剂技术,同时,环保高效的生物纳米技术将是重要发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张峙
李飞
胡琳琪
郑安应
佘跃惠
张文达
关键词:  生物和化学硫化氢清除剂  活性纳米除硫剂  化学反应性和选择性  生物酶除硫剂  嗜热微生物    
Abstract: It is well known that hydrogen sulfide (H2S) is a highly toxic and corrosive chemical, imposes severe health threat on human beings, and may lead to equipment and pipelines failures. Every effort has been made to completely remove H2S. The most suitable method is to employ some effective chemical scavengers, which react with H2S dissolved into an aqueous/oil/gas phase and convert it into a nontoxic and less corrosive compound that can be easily removed. Instead of direct addition of a chemical scavenger, different approaches, including absorption and adsorption, are also adopted to eliminate H2S from gas streams and during well-drilling processes under the actual reservoir conditions. The most recent research advancements are the applications of nano-active sulfide scavengers (NASS) and bio-enzyme scavengers (BES) for H2S removal. NASS is a non-toxic, non-hazardous, non-dangerous chemical that is manufactured by using advanced chemical nanotechnology processes. It has unique molecular properties to enhance chemical reactivity and selectivity and can absorb a wide range of harmful chemicals. Due to its enhanced chemical reactivity and selectivity as well as exceptionally high porosity, NASS improves scavenger efficacy by 4—6 times. On the other hand, BES is generated by cloning the cDNA sequence from a thermophilic organism and an encoded protein in a suitable vector. Its efficacy is evaluated in the reservoir brine, crude oil and mixed reservoir fluids from laboratory-scale tests to pilot-scale tests with the reduction of H2S concentration in the range of 72%—90%.
This review presents the most recent research progresses and technical evaluations of a variety of chemical and biological H2S scavengers that are currently used in the oil and gas industry. It also reveals some technical challenges and offers potential technical solutions. Future studies are required to design and formulate high-capacity sorbents with 100% re-generability. In addition, advanced studies are also required to research and develop environment-friendly and highly effective hydrogen sulfide scavengers through bio-nanotechnology.
Key words:  biological and chemical hydrogen sulfide (H2S) scavengers    nano-active sulfide scavengers (NASS)    chemical reactivity and selectivity    bio-enzyme scavengers (BES)    thermophilic organisms
                    发布日期:  2021-09-26
ZTFLH:  Q939.97  
基金资助: 国家自然科学基金(51634008;51574038);十三五国家科技重大专项(2017ZX05009-004)
通讯作者:  sheyuehui@163.com   
作者简介:  张峙,高级工程师。主要研究方向:油井堵水增油技术、油田防腐防垢技术。
佘跃惠,博士,教授。主要研究方向为生物纳米技术在油气工业应用,油田生物腐蚀与防治,本源微生物采油,石油污染生物修复。
引用本文:    
张峙, 李飞, 胡琳琪, 郑安应, 佘跃惠, 张文达. 油气工业生物及化学硫化氢清除剂研究进展[J]. 材料导报, 2021, 35(17): 17185-17189.
ZHANG Shi, LI Fei, HU Linqi, ZHENG Anying, SHE Yuehui, ZHANG Wenda. Recent Research Progresses of Biological and Chemical H2S Scavengers in the Oil and Gas Industry. Materials Reports, 2021, 35(17): 17185-17189.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080113  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17185
1 Orr W L. Advances in organic geochemistry, Pergamon Press, Oxford, 1978.
2 Postgate J.The sulphate-reducing bacteria(2nd ed), Cambridge University Press, UK, 1984.
3 Dai J.Acta Sedimentologica Sinica, 1985,3,109.
4 Wang Q.Petroleum Exploration and Development, 2008, 35, 349.
5 Kapadia P R, Wang J, Gates I D, et al. In: SPE Heavy Oil Conference. Canada, 2013, pp.226.
6 Marriott R A, Pirzadeh P, Marrugo-Hernandez J J, et al. Canadian Journal of Chemistry, 2016, 94, 406.
7 Dawson J, John G, Oliver K. In: Shreir’s Corrosion, Elsevier, Amsterdam, 2010.
8 Rebak R B. Corrosion Reviews, 2011, 29, 123.
9 Viswanathan S S. Reviews in Chemical Engineering, 2021, 37, 663.
10 Perez T E. JOM, 2013, 65, 1033.
11 Kappes M, Iannuzzi M, Rebak R B, et al.Corrosion Reviews, 2014, 32, 101.
12 Yang Y, Sun H, Luo T, et al.Asian Journal of Chemistry, 2014, 26, 3301.
13 Agbroko O W, Piler K, Benson T J. ChemBioEng Reviews, 2017, 4, 339.
14 Groysman A. Corrosion problems and solutions in oil refining and petrochemical industry(1st ed), Springer, Switzerland, 2017.
15 Iannuzzi M, Barnoush A, Johnsen R. Npj Materials Degradation, 2017, 1, 2.
16 Saji V S. Corrosion inhibitors in the oil and gas industries, Wiley, New Jersey, 2019.
17 Valdez B , Schorr M , Bastidas J M.Corrosion Reviews, 2015, 33, 175.
18 Iliuta M C, Larachi F.Journal of Chemical & Engineering Data, 2007, 52, 2.
19 Reiffenstein R J, Hulbert W C, Roth S H. Annual Review of Pharmacology and Toxicology, 1992, 32, 109.
20 Jiang J, Chan A, Ali S, et al. Scientific Reports, 2016, 6, 20831.
21 Al-Humaidan A Y, Nasr-El-Din H A. In:SPE International Symposium on Oilfield Chemistry. Houston, 1999, pp.603.
22 Amosa M K, Mohammed I A, Yaro S A. Nafta,2010, 61, 85.
23 Kenreck G.Hydrocarbon Process, 2014, 93, 73.
24 Jones I M, Sorrells J L, Stark J L. U.S. patent, US 20170066976A1, 2017.
25 Subramaniam R, Yasa S, Bertrand T, et al.Journal of Natural Gas Science & Engineering, 2018,49, 417.
26 Park N K , Lee Y J , Han G B , et al.Solid State Phenomena, 2007, 124-126,1003.
27 Taylor G N. U.S. patent, US8734637B2, 2014.
28 Ahmadun F R, Pendashteh A, Abdullah L C, et al. Journal of Hazar-dous Materials, 2009,170, 530.
29 Igunnu E T, Chen G Z. International Journal of Low-Carbon Technologies, 2014, 9, 157.
30 Ahmad W, Sethupathi S, Kanadasan G, et al. Reviews In Chemical Engineering, 2019,37(3),407.
31 Saji V S. Innovations in Corrosion & Materials Science, 2011, 1, 63.
32 Goodwin N, Walsh J M, Wright R, et al. In: SPE International Sympo-sium on Oilfield Chemistry, 2011.
33 Keenan S R, Collins J, Ramachandran S, et al. U.S. patent, US 20130090271A1, 2013.
34 Portela N A, Silva S, Jesus L, et al. Fuel, 2018, 216, 681.
35 El-Gendy N S, Speight J G. Handbook of refinery desulfurization, CRC Press, 2015.
36 Burns T W, Quigley P F, Zhao C T. International patent, WO 2016174415A1, 2016.
37 Gupta D V S, Shen D. U.S. patent, US20160009980 A1, 2016.
38 Shah M S, Tsapatsis M, Siepmann J I. Chemical Reviews, 2017,117, 9755.
39 Maryam K, Mansoor A. Industrial & Engineering Chemistry, 2019, 58, 49,22133.
40 Antonio P, Nicola G, Paolo A.Separation & Purification Reviews, 2019, 48, 78.
41 Sarno P. Chemical Engineering Transactions, 2018, 68, 481.
42 Ali G, Arezoo K. Journal of Petroleum Science and Engineering, 2020, 184,106684.
43 Galstyan V, Poli N, Comini E. Applied Sciences, 2019, 9, 1167.
44 Whittaker S L. In: Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 2018.
45 Armstrong C D, Debenedictis F H. International patent, WO2018/006033A1, 2018.
46 Armstrong C D, Debenedictis F H. U.S. patent, US10556815, 2020.
47 Wakai S, Kikumoto M, Kanao T, et al. Bioscience Biotechnology and Biochemistry, 2004, 68, 2519.
48 Prasad D K, Dhulipala J J, et al. In:SPE International Oilfield Corrosion Conference and Exhibition. Aberdeen, Scotland, UK, 2018.
49 Dhulipala P, Jani J, Wyatt M, et al. In:SPE Middle East Oil and Gas Show and Conference. Manama, Bahrain, 2019.
No related articles found!
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed