Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21020004-8    https://doi.org/10.11896/cldb.21020004
  高分子与聚合物基复合材料 |
防污涂层研究及应用新进展
王池嘉1,2,*, 刘书佩1, 王子华1, 罗红欣1
1 东北石油大学化学与化工学院,黑龙江 大庆 163000
2 天津大学化工学院, 化学工程联合国家重点实验室, 天津 300350
New Development of the Research and Applications of Antifouling Coatings
WANG Chijia1,2,*, LIU Shupei1, WANG Zihua1, LUO Hongxin1
1 Chemistry and Chemical Engineering College, Northeast Petroleum University, Daqing 163000,Heilongjiang, China
2 State Key Laboratory for Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
下载:  全 文 ( PDF ) ( 11644KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 防污涂层具有重要的应用价值,对人们的生产、生活产生了重要影响。传统的防污涂层多以灭藻剂或者有机锡等有毒物质为填料直接添加到涂层中,通过涂层中有毒物质的释放达到防污的目的,但同时对海洋水体造成严重污染。随着国内外对生态环境的日益重视与关注,涂层在防污的同时应该考虑到对水体生态的保护。近年来,科研人员致力于新型环保、长效防污涂层的开发。有些高性能环保防污涂层已经被实际应用,但整个行业尚处于起步阶段,高性能环保仍是防污涂层发展的重要方向。本文综述了防污涂层的核心材料及技术应用研究新进展。一方面,重点介绍了几种可降解环保防污涂层(包括聚氨酯可降解防污涂层、聚己内酯可降解防污涂层以及聚丙烯酸酯可降解防污涂层)的优缺点、发展状况及应用前景;另一方面,介绍了几种先进的环境友好型非降解防污涂层,包括自抛光防污涂层、超疏水防污涂层、超亲水防污涂层、亲疏水转换防污涂层、导电聚合物防污涂层以及仿生防污涂层,并对其适用条件、防污机理、性能及研究进展进行了详细阐述。同时归纳总结了多种防污涂层的制备方法、涂层特点及关键技术难点,分析了环保防污涂层面临的问题并展望其前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王池嘉
刘书佩
王子华
罗红欣
关键词:  防污涂层  可降解涂层  仿生防污  超亲水  超疏水    
Abstract: It is generally believed that antifouling coatings have important application value for human production and life. Traditional antifouling coatings mostly use toxic substances such as algaecides or organotin as fillers in coatings. However,the release of toxic substances in the coating achieves the purpose of antifouling, but it also causes serious damage to ocean environment. With the development of society, people are paying more attention to the ecological environment, and the design of coatings needs to take into account the protection of water ecology. In recent years, researchers have focused on new environmentally-friendly, long-life antifouling coatings. Although some high-performance environmental-friendly antifouling coatings have been applied , but the industry of environmental-friendly coatings is still in its infancy, and high-performance environmental-friendly is an important direction for the development of antifouling coatings. In this paper, the new developments and technology applications in the core materials and technology of antifouling coatings is reviewed. On the one hand, some degradable environmentally friendly anti-fouling coatings are focused, including polyurethane degradable antifouling coatings, polycaprolactone degradable antifouling coatings, and pol-yacrylate degradable antifouling coatings. Simultaneously, the advantages, disadvantages, development status and application prospects are demonstrated. In addition, several advanced environmentally friendly non-degradable antifouling coatings are introduced, including self-polishing antifouling coatings, superhydrophobic antifouling coatings, superhydrophilic antifouling coatings, hydrophilic-hydrophobic conversion antifouling coatings, conductive polymer antifouling coatings and bionic antifouling coatings, and described the applicable conditions, antifouling mechanism, performance and research progress in the article. The preparation methods, coating characteristics and key technical difficulties of various antifouling coatings are summarized. Finally, the problems faced by environmental protection antifouling coatings are analyzed and their prospects are prospected.
Key words:  antifouling coating    degradable coating    bionic antifouling    super hydrophilicity    super hydrophobiccity
发布日期:  2022-12-09
ZTFLH:  TK124  
基金资助: 国家自然科学基金杰出青年基金项目(51925403)
通讯作者:  *wangchijia@163.com   
作者简介:  王池嘉,东北石油大学石油与天然气化工研究院副教授、硕士研究生导师。2013年6月本科毕业于东北石油大学能源化学工程专业,2018年7月在东北石油大学化学化工学院取得博士学位,2020至今在天津大学进行博士后研究工作。先后参加国家自然科学基金项目3项,目前作为主要完成人参与防腐功能涂层的研究。主要从事功能防腐涂层、功能型多维填料以及涂层工业应用转化的相关研究。近年来,在功能防腐领域发表论文20余篇,授权国际发明专利一项,国内发明专利10项。
引用本文:    
王池嘉, 刘书佩, 王子华, 罗红欣. 防污涂层研究及应用新进展[J]. 材料导报, 2022, 36(23): 21020004-8.
WANG Chijia, LIU Shupei, WANG Zihua, LUO Hongxin. New Development of the Research and Applications of Antifouling Coatings. Materials Reports, 2022, 36(23): 21020004-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020004  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21020004
1 Azemar F, Faÿ F, Réhel K, et al. Progress in Organic Coatings, 2020, 148, 105841.
2 Miller R J , Adeleye A S, Page H M, et al. Journal of Nanoparticle Research, 2020, 22(5), 1.
3 Ma Z W, Hong Y, Nelson D M, et al. Biomacromolecules, 2011, 12(9), 3265.
4 Zhang L L, Xiong C D, Deng X M. Journal of Applied Polymer Science, 1995, 56(1), 103.
5 Deng J Q, Saleem M, Jia Q, et al. Reactive and Functional Polymers, 2020, 148, 104506.
6 Farboudi A, Nouri A, Shirinzad S, et al. International Journal of Biological Macromolecules, 2020, 150, 1130.
7 Vadillo J, Larraza I, Arbelaiz A, et al. Journal of Applied Polymer Science, 2020, 137(26), 48847.
8 Yao J H, Chen S S, Ma C F, et al. Journal of Materials Chemistry B, 2014, 2(31), 5100.
9 Chen S S, Ma C F, Zhang G Z. Polymer, 2016, 90, 215.
10 Faÿ F, Linossier I, Langlois V, et al. Biomacromolecules, 2006, 7(3), 851.
11 Faÿ F, Linossier I, Langlois V, et al. Biomacromolecules, 2007, 8(5), 1751.
12 Yang H J, Chang H, Zhang Q, et al. ACS Applied Materials & Interfaces, 2020, 12(14), 16849.
13 Zhou X, Xie Q Y, Ma C F, et al. Industrial & Engineering Chemistry Research, 2015, 54(39), 9559.
14 Ma C F, Xu L G, Xu W T, et al. Journal of Materials Chemistry B, 2013, 1(24), 3099.
15 Dai G X, Xie Q Y, Ai X Q, et al. ACS Applied Materials & Interfaces, 2019, 11(44), 41750.
16 Nguyen M N, Bressy C, Margaillan A. Polymer, 2009, 50(14), 3086.
17 Qian H, Zhu Y, Wang H, et al. Industrial & Engineering Chemistry Research, 2017, 56(44), 12663.
18 Latthe S S, Sutar R S, Kodag V S, et al. Progress in Organic Coatings, 2019, 128, 52.
19 Sam E K, Sam D K, Lv X, et al. Chemical Engineering Journal, 2019, 373, 531.
20 Zhong L Q, Gong X. Soft Matter, 2019, 15(46), 9500.
21 Brady J R F, Singer I L. Biofouling, 2000, 15(1-3), 73.
22 Zhu Y J, Li H W, Zhu M L, et al. Chemical Engineering Journal, 2020, 403, 126467.
23 Valenti L E, Smania A M, De Pauli C P, et al. Colloids & Surfaces B Biointerfaces, 2013, 112, 294.
24 Zhang G W, Bai R B, Shen S S, et al. Applied Surface Science, 2019, 464, 429.
25 Tian S, Jiang D Y, Pu J B, et al. Chemical Engineering Journal, 2019, 370, 1.
26 Xie C G, Guo H H, Zhao W Q, et al. Langmuir, 2020, 36(9), 2396.
27 Ekblad T, Bergström G, Ederth T, et al. Biomacromolecules, 2008, 9(10), 2775.
28 Hucknall A, Rangarajan S, Chilkoti A. Advanced Materials, 2009, 21(23), 2441.
29 Buskens P, Wouters M, Rentrop C, et al. Journal of Coatings Technology & Research, 2013, 10(1), 29.
30 Huang J Y, Xue J M, Xiang K W, et al. Colloids & Surfaces B Biointerfaces, 2011, 88(1), 315.
31 Szott L M, Horbett T A. Current Opinion in Chemical Biology, 2011, 15(5), 683.
32 Ware C S, Smith-Palmer T, Peppou-Chapman S, et al. ACS Applied Materials & Interfaces, 2018, 10(4), 4173.
33 Wang J, Liu Y, Liu T, et al. Journal of Membrane Science, 2020, 599, 117851.
34 Holmes P F, Currie E P K, Thies J C, et al. Journal of Biomedical Materials Research Part A, 2008, 91(3), 824.
35 Bosker W T E, Patzsch K, Stuart M A C, et al. Soft Matter, 2007, 3(6), 754.
36 Yang W J, Cai T, Neoh K G, et al. Langmuir the ACS Journal of Surfaces & Colloids, 2011, 27(11), 7065.
37 Pidhatika B, Nalam P C. Journal of Applied Polymer Science, 2019, 136(24), 47659.
38 Joshi R G, Goel A, Mannari V M, et al. Journal of Applied Polymer Science, 2009, 114(6), 3693.
39 Galhenage T P, Webster D C, Moreira A M S, et al. Journal of Coatings Technology & Research, 2017, 14(2), 1.
40 Jiang J X, Fu Y C, Zhang Q H, et al. Applied Surface Science, 2017, 412, 1.
41 Goda T, Miyahara Y. Langmuir, 2018, 35(5), 1126.
42 Xie Z P, Wang J J, Huang C S, et al. Development and Application of Materials, 2011(1), 89(in Chinese).
谢志鹏, 王晶晶, 黄从树, 等. 材料开发与应用, 2011(1), 89.
43 Kausar A. Journal of Macromolecular Science, Part A, 2018, 55(5), 440.
44 Wang M H, Kovacik P, Gleason K K. Langmuir, 2017, 33(40), 10623.
45 Wei H, Wu F, Li L J, et al. Analytical Chemistry, 2020, 92(16), 11374.
46 Cai W, Wang J X, Quan X D, et al. Surface and Coatings Technology, 2018, 334, 7.
47 Hui N, Sun X T, Song Z L, et al. Biosensors and Bioelectronics, 2016, 86, 143.
48 Lee C W, Wu J K, Chang C H, et al. ACS Applied Materials & Interfaces, 2020, 12(16), 19102.
49 Qiu S H, Chen C, Cui M J, et al. Applied Surface Science, 2017, 407, 213.
50 Magin C M, Cooper S P, Brennan A B. Materials Today, 2010, 13(4), 36.
51 Lang A W, Motta P, Hidalgo P, et al. Bioinspiration & Biomimetics, 2008, 3(4), 046005.
52 Raschi W, Tabit C. Marine and Freshwater Research, 1992, 43(1), 123.
53 Nagamine H, Yamahata K, Hagiwara Y, et al. Journal of Turbulence, 2004, 5(18), 1.
54 Dundar Arisoy F, Kolewe K W, Homyak B, et al. ACS Applied Materials & Interfaces, 2018, 10(23), 20055.
55 Jin H C, Bing W, Tian L M, et al. Materials, 2019, 12(16), 2608.
[1] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[2] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[3] 杨福生, 王百祥, 张妍, 任永忠, 陈永哲, 杨武. 纳米银协同沙子构筑超疏水表面及其性能研究[J]. 材料导报, 2022, 36(6): 21010001-5.
[4] 盛奥, 姜昊基, 赵亚欣, 魏忠, 李昊, 贾昊, 王贺云. F-ZIF-90/PDMS混合基质膜的制备及强化乙醇传递过程的研究[J]. 材料导报, 2022, 36(17): 21030316-6.
[5] 刘晨, 丁德一, 李逸辰, 姚东东, 李天宇, 郑亚萍. 防冰材料研究进展[J]. 材料导报, 2022, 36(16): 20080061-7.
[6] 杜咪咪, 薛朝华, 郭小静, 贾顺田. 光致发热材料的超疏水化改性及其对光热转换性能的影响[J]. 材料导报, 2022, 36(15): 21010272-5.
[7] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[8] 张凯, 桂泰江, 吴连锋, 丛巍巍, 吕钊. 仿生物天然防污策略的研究与发展[J]. 材料导报, 2021, 35(z2): 550-553.
[9] 唐宏, 董兵海, 艾虎. 透明超疏水涂层制备技术研究进展[J]. 材料导报, 2021, 35(Z1): 156-159.
[10] 余传明, 曾圣威, 刘叶原, 司徒紫晴, 刘可, 田丽芬, 罗文静, 梁远维, 李泳. 高内相乳液法制备P(St-DVB)多孔吸油材料及其在油水分离中的应用[J]. 材料导报, 2021, 35(4): 4200-4204.
[11] 潘洁, 赵美蓉, 孙玉楷, 路敦强, CLARENCE Augustine T. H Tee, 宋乐, 郑叶龙. 液体弹珠的微流体操作及工程应用[J]. 材料导报, 2021, 35(23): 23001-23019.
[12] 韦文厂, 刘峥, 魏润芝, 刁娜, 吕奕菊. 基于MOFs材料的超疏水复合涂层的制备及其对碳钢的防腐蚀研究[J]. 材料导报, 2021, 35(20): 20068-20075.
[13] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[14] 杨福生, 张振宇, 李云清, 陈永哲, 任永忠, 马乐, 杨武. 层层自组装法制备超疏水/超亲油棉织物及其油水分离性能[J]. 材料导报, 2021, 35(12): 12190-12195.
[15] 张争奇, 强亚奎, 张世豪, 王东, 赵富强. 沥青路面超疏水抗凝冰涂层设计及性能[J]. 材料导报, 2021, 35(10): 10073-10079.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed