Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19070-19080    https://doi.org/10.11896/cldb.20070002
  无机非金属及其复合材料 |
(超)疏水水泥基材料的研究进展
田雷, 邱流潮
中国农业大学水利与土木工程学院,北京 100083
Progress of (Super) Hydrophobic Cement-based Materials
TIAN Lei, QIU Liuchao
College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China
下载:  全 文 ( PDF ) ( 4786KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以混凝土和砂浆为代表的水泥基材料凭借其硬化后优异的力学性能和耐久性能被广泛应用于工程领域。然而,水泥基材料的多孔性和亲水性致使其在使用过程中很容易受到外界水和侵蚀离子的加速破坏,尤其是在潮湿、临海、寒冷地区,严重影响了其结构的耐久性和使用寿命。(超)疏水水泥基材料是通过对常规水泥基材料进行表面或整体(超)疏水改性制成的新型建筑材料,与常规水泥基材料相比,其具有更好的疏水性、抗渗性、抗冻性和抗氯离子侵蚀性,在一些特殊工程领域具有非常好的应用前景。因此,针对(超)疏水水泥基材料的研究引起了国内外学者越来越多的关注。
近年来,国内外学者针对(超)疏水水泥基材料进行了大量科学研究并取得了非常丰硕的研究成果,这为(超)疏水水泥基材料的工程应用提供了重要参考。本文将对近年来国内外针对(超)疏水水泥基材料的最新研究成果进行综合介绍,其中重点包括以下几个方面:(1)现有的表面润湿模型,包括Young氏模型、Wenzel模型和Cassie-Baxter模型;(2)水泥基材料(超)疏水改性方式,包括表面改性和整体改性,并对比了改性方式对水泥基材料润湿特性的影响;(3)(超)疏水表面改性和整体改性对水泥基材料力学性能的影响规律;(4)(超)疏水表面改性和整体改性对水泥基材料耐久性的影响效果。最后对(超)疏水水泥基材料的研究结论进行了归纳总结并对研究前景进行了展望,以期能够为开发性能优异、经济环保的(超)疏水水泥基材料提供借鉴与参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田雷
邱流潮
关键词:  超疏水性水泥基材料  疏水性水泥基材料  润湿模型  力学性能  抗渗性  抗冻性  抗氯离子侵蚀性  耐久性    
Abstract: Cement-based materials, such as concrete and cement mortar, have been widely used in the construction industry due to their excellent mechanical properties and durability. However, the cement-based materials are prone to damage by the external water and ions corrosion because of their porosity and hydrophilicity, especially in the humid, seaside, and cold areas, thereby deteriorating their structural durability. In order to overcome these drawbacks, (super) hydrophobic cement-based materials have been developed by means of surface or integral (super) hydrophobic modification of conventional cement-based materials. The (super) hydrophobic cement-based materials have several advantages over the conventional ones, such as the hydrophobicity, impermeability, frost resistance and chloride corrosion resistance. Thus, it has attracted more and more attention from experts and scholars worldwide.
In recent years, scientists worldwide have conducted extensive investigations of (super) hydrophobic cement-based materials and a lot of research results have been achieved, which promoting the engineering application of (super) hydrophobic cement-based materials. This study aims to present a comprehensively review on the latest advancements of (super) hydrophobic cement-based materials, and the paper is orga-nized as follows: (1) surface wetting models, including Young's model, Wenzel model and Cassie-Baxter model; (2) (super) hydrophobic modification methods of cement-based materials, including surface and integral modification. The effects of different modification methods on the wetting characteristics of cement-based materials are compared; (3) the effect of surface and integral (super) hydrophobic modification on the mechanical properties of cement-based materials; (4) the effect of surface and integral (super) hydrophobic modification on the durability of cement-based materials. Finally, the conclusions are summarized and the future research directions are proposed.
Key words:  super-hydrophobic cement-based materials    hydrophobic cement-based materials    wetting models    mechanical properties    impermeability    frost resistance    chloride corrosion resistance    durability
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TV43  
基金资助: 国家自然科学基金(11772351);国家重点研发计划(2018YFC0406604;2018YFC0406806)
通讯作者:  qiuliuchao@cau.edu.cn   
作者简介:  田雷,2016年7月毕业于河北工程大学,获得工学学士学位。现为中国农业大学水利与土木工程学院博士研究生,在邱流潮教授的指导下进行研究。目前主要研究领域为超疏水自密实弹性混凝土的制备与性能调控。
邱流潮,中国农业大学水利与土木工程学院,水利工程系,教授,博士生导师。2003年毕业于清华大学,获工学博士学位。现为中国水利学会水工结构专业委员会委员,中国大坝工程学会大坝数值模拟专业委员会委员,中国力学学会计算力学专业委员会会员,国际水利与环境工程学会(IAHR)会员,国际期刊Journal of Hydrodynamics编委。主要研究方向为水利工程仿真与水工建筑物新材料研究。
引用本文:    
田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
TIAN Lei, QIU Liuchao. Progress of (Super) Hydrophobic Cement-based Materials. Materials Reports, 2021, 35(19): 19070-19080.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070002  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19070
1 She W, Wang X, Miao C, et al. Construction and Building Materials, 2018, 181, 347.
2 Li Q, Yang K, Yang C. Cement and Concrete Composites, 2018, 95, 183.
3 Ma Z, Zhu F, Zhao T. KSCE Journal of Civil Engineering, 2018, 22(2), 657.
4 Wang W, Wang S, Yao D, et al. Construction and Building Materials, 2020, 238, 117.
5 Han B, Wang Y, Dong S, et al. Journal of Intelligent Material Systems and Structures, 2015, 26(11), 1.
6 Zhang P, Cong Y, Vogel M, et al. Construction and Building Materials, 2017, 148, 113.
7 Wasim M, Hussain R R. Construction and Building Materials, 2015, 78, 144.
8 Liu G, Zhang Y, Ni Z, et al. Construction and Building Materials, 2016, 115, 1.
9 Koch G, Varney J, Thompson N, et al. International Measures of Prevention, Application, and Economics of Corrosion Technologies Study, NACE International, USA, 2016.
10 She W, Yang J, Hong J, et al. Construction and Building Materials, 2020, 247, 118563.
11 Jia L, Shi C, Pan X, et al. Cement and Concrete Composites, 2016, 67, 85.
12 Muzenski S, Flores-Vivian I, Sobolev K. Cement and Concrete Compo-sites, 2015, 57, 68.
13 Lei L, Wang Q, Xu S, et al. Construction and Building Materials, 2020, 251, 118946.
14 Qu Z Y, Alam Q, Gauvin F, et al. Journal of Cleaner Production, 2020, 249, 119341.
15 Hejazi V. Wetting, Superhydrophobicity, and Icephobicity in Biomimetic Composite Materials.Ph.D. Thesis, University of Wisconsin-Milwaukee, USA, 2014.
16 Young T. Philosophical Transactions of the Royal Society of London, 1805, 95, 65.
17 Wenzel R N. Industrial & Engineering Chemistry, 1936, 28(8), 988.
18 Wenzel R N. The Journal of Physical and Colloid Chemistry, 1949, 53(9), 1466.
19 Hooda A, Goyat M S, Pandey J K, et al. Progress in Organic Coatings, 2020, 142, 105557.
20 Bhushan B, Jung Y C. Nanotechnology, 2006, 17(11), 2758.
21 Nosonovsky M, Bhushan B. Microsyst Technol, 2005, 11, 535.
22 Cassie A B D, Baxter S. Transactions of the Faraday Society, 1944, 40, 546.
23 Callies M, Quéré D. Soft Matter, 2005, 1(1), 55.
24 Gao Y L, Qu L C, He B, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(1), 70(in Chinese).
高英力,曲良辰,何倍,等.硅酸盐通报, 2019, 38(1), 70.
25 Tittarelli F, Moriconi G. Corrosion Science, 2010, 52, 2958.
26 Li Q, Yang K, Yang C. Cement and Concrete Composites,2018,95,183.
27 Song J, Zhao D, Han Z, et al. Journal of Materials Chemistry A, 2017, 5, 14542.
28 Li Y, Gou L, Wang H, et al. Materials Letters, 2019, 244, 31.
29 Chen H, Feng P, Du Y, et al. Construction and Building Materials, 2018, 182, 620.
30 Tittarelli F, Moriconi G. Cement and Concrete Research, 2011, 41(6), 609.
31 Husni H, Nazari M R, Yee H M, et al. Construction and Building Materials, 2017, 144, 385.
32 Flores-Vivian I, Hejazi V, Kozhukhova M I, et al. ACS Appl Mater Interfaces, 2013, 5(24), 13284.
33 Tsibouklis J, Nevell T G. Advanced Materials, 2003, 15(78), 647.
34 Xi M, Yong J, Chen F, et al. RSC Advances, 2019, 9, 6650.
35 Genzer J, Efimenko K. Biofouling, 2006, 22(5), 339.
36 Liu Z, Hansen W. Cement and Concrete Composites, 2016, 69, 49.
37 Gao Y, He B, Xiao M, et al. Construction and Building Materials, 2018, 165, 548.
38 Shen L, Jiang H, Wang T, et al. Progress in Organic Coatings, 2019, 129, 209.
39 Nahvi A, Sadoughi M K, Arabzadeh A, et al. Journal of Computational Design and Engineering, 2019, 6(4), 693.
40 Wang Z B, Liu W. New Building Materials, 2017, 44(10), 128(in Chinese).
王志博,刘伟.新型建筑材料, 2017, 44(10), 128.
41 Chindaprasirt P, Rattanasak U. Journal of Cleaner Production, 2020, 264, 121748.
42 He B, Gao Y, Qu L, et al. Journal of Cleaner Production, 2019, 225, 1169.
43 Geng Y, Li S, Hou D, et al. Materials Letters, 2020, 265, 127423.
44 Jiang L. Chemical Industry and Engineering Progress, 2003, 22(12), 1258(in Chinese).
江雷.化工进展, 2003, 22(12), 1258.
45 Wang P, Yang Y, Wang H, et al. Surface and Coatings Technology, 2019, 362, 90.
46 Gao Y L, Li X K, Dai K M, et al. Materials Rports B:Research Papers, 2017, 31(7), 132(in Chinese).
高英力,李学坤,代凯明,等.材料导报:研究篇, 2017, 31(7), 132.
47 Gao Y L, Li X K, Huang L, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(10), 3288(in Chinese).
高英力,李学坤,黄亮,等.硅酸盐通报, 2016, 35(10), 3288.
48 Li R, Hou P, Xie N, et al. Cement and Concrete Composites, 2018, 87, 89.
49 Gao Y, Qu L, He B, et al. Construction and Building Materials, 2018, 191, 270.
50 Qu Z Y, Yu Q L. Construction and Building Materials, 2018, 191, 176.
51 Liu S J. Preparation of environmentally friendly super-hydrophobic concrete and its application in long-distance water transport channels in cold regions. Master's Thesis, Northwest A & F University, China, 2019(in Chinese).
刘少军. 环保型超疏水混凝土制备及在寒区长距离输水渠道应用. 硕士学位论文, 西北农林科技大学, 2019.
52 Horgnies M, Chen J J. Cement and Concrete Composites, 2014, 52, 81.
53 Zhang X, Guo Y, Chen H, et al. Journal of Materials Chemistry A, 2014, 2(24), 9002.
54 Wang P, Zhao T, Bian R, et al. ACS Nano, 2016, 11(12), 12385.
55 Tian X, Verho T, Ras R H A. Science, 2016, 352(6282), 142.
56 Ding Y G, Sun L, Li X S, et al. New Building Materials, 2019, 46(8), 154(in Chinese).
丁永刚,孙蕾,李学森,等.新型建筑材料, 2019, 46(8), 154.
57 Wang F, Xie T, Lei S, et al. Construction and Building Materials, 2020, 246, 118466.
58 Wang F, Xie T, Ou J, et al. Journal of Alloys and Compounds, 2020, 823, 153702.
59 Zhu R. Fabrication and properties of super-hydrophobic self-cleaning coatings. Master's Thesis, South China University of Technology, China, 2018(in Chinese).
朱蓉. 超疏水自清洁涂层的制备及其性能研究. 硕士学位论文, 华南理工大学, 2018.
60 Xue X, Yang Z, Li Y, et al. Solar Energy Materials and Solar Cells, 2018, 174, 292.
61 Lei X. Study on fly ash-based super-hydrophobic coating. Master's Thesis, Shanxi University, China, 2019(in Chinese).
雷旭. 粉煤灰基超疏水涂层的研究. 硕士学位论文, 山西大学, 2019.
62 Li Y X. Fabrication and Properties of Inexpensive Super-hydrophobic Concrete Coating. Master's Thesis, Dalian University of Technology, China, 2019(in Chinese).
李宇翔. 低成本超疏水混凝土涂层制备及其性能研究. 硕士学位论文, 大连理工大学, 2019.
63 Wang F, Lei S, Ou J, et al. Applied Surface Science, 2020, 507, 145016.
64 Han Z J. Preparation and Properties of High Strength Super-hydrophobic Concrete. Master's Thesis, Dalian University of Technology, China, 2017(in Chinese).
韩正金. 高强度超疏水混凝土制备及其性能研究. 硕士学位论文, 大连理工大学, 2017.
65 Feng Z, Wang F, Xie T, et al. Construction and Building Materials, 2019, 227, 116678.
66 Li F, Liu J. Construction and Building Materials, 2018, 166, 684.
67 Shahbazi R, Korayem A H, Razmjou A, et al. Construction and Building Materials, 2020, 233, 117238.
68 Yao L, He J. Progress in Materials Science, 2014, 61, 94.
69 Song J, Li Y, Xu W, et al. Journal of Colloid and Interface Science, 2019, 541, 86.
70 Wong H S, Barakat R, Alhilali A, et al. Cement and Concrete Research, 2015, 70, 9.
71 Mora E, González G, Romero P, et al. Construction and Building Mate-rials, 2019, 221, 210.
72 Muzenski S, Flores-Vivian I, Sobolev K. Construction and Building Materials, 2020, 244, 118354.
73 Muzenski S, Flores-Vivian I, Sobolev K. Construction and Building Materials, 2015, 81, 291.
74 Dong B, Wang F, Abadikhah H, et al. ACS Applied Materials & Interfaces, 2019, 11(45), 42801.
75 Zhang J. Study on the Performance of the Outer Coating and Incorporation Organic Silicone of Cement Mortar. Master's Thesis, Wuhan Polytechnic University, China, 2015(in Chinese).
张娟. 外涂和内掺有机硅对水泥砂浆的性能影响研究. 硕士学位论文, 武汉轻工大学, 2015.
76 She W, Zheng Z, Zhang Q, et al. Cement and Concrete Research, 2020, 131, 106029.
77 Wang H. Adhesion, 2019(7), 142(in Chinese).
王辉.粘结, 2019(7), 142.
78 Zhu J, Liao K. Materials Chemistry and Physics, 2020, 250, 123064.
79 Pan X, Shi Z, Shi C, et al. Construction and Building Materials, 2017, 132, 578.
80 Liu J, Vipulanandan C. Tunnelling and Underground Space Technology, 2001, 16(4), 311.
81 Berndt M L. Construction and Building Materials, 2011, 25(10), 3893.
82 Rong H, Gao R X, Gao L X, et al. Journal of Building Materials, DOI:http://kns.cnki.net/kcms/detail/31.1764.TU.20181025.1619.004.html(in Chinese).
荣辉,高瑞晓,高礼雄,等.建筑材料学报, DOI:http://kns.cnki.net/kcms/detail/31.1764.TU.20181025.1619.004.html.
83 Bofeldt M, Nyman B. Restoration of Buildings and Monuments, 2002, 8(2-3), 217.
84 Sun H Y, Yang Z, Wang X C, et al. The Ocean Engineering, 2016, 34(6), 93(in Chinese).
孙红尧,杨争,王学川,等.海洋工程, 2016, 34(6), 93.
85 Basheer P A M, Basheer L, Cleland D J, et al. Construction and Buil-ding Materials, 1997, 11(7-8), 413.
86 Al-Kheetan M J, Rahman M M, Chamberlain D A. Construction and Building Materials, 2019, 207, 122.
87 Subbiah K, Park D, Lee Y S, et al. Progress in Organic Coatings, 2018, 125, 48.
88 Muzenski S. The design of high performance and ultra-high performance fiber reinforced cementitious composites with nano-materials. Ph.D. Thesis, University of Wisconsin-Milwaukee, USA, 2015.
89 Liu B, Shi J, Sun M, et al. Journal of Building Engineering, 2020, 31, 101337.
90 Basheer L, Kropp J, Cleland D J. Construction and Building Materials, 2001, 15(2), 93.
91 Chen H, Feng P, Du Y, et al. Construction and Building Materials, 2018, 182, 620.
92 Zhang C, Li S C, Zhao T J, et al. Concrete,2016(7),130(in Chinese).
张翠,李绍纯,赵铁军,等.混凝土, 2016(7), 130.
93 Al-Kheetan M J, Rahman M M, Balakrishna M N, et al. Canadian Journal of Civil Engineering, 2019, 46(8), 677.
94 Ma Z M, Zhao T J, Zhu F Z, et al. Engineering Construction, 2012, 44(4), 1(in Chinese).
马志鸣,赵铁军,朱方之,等.工程建设, 2012, 44(4), 1.
95 Powers T C, Helmuth R A. In: Proceedings of the Thirty-Second Annual Meeting of the Highway Research Board. Washington.D.C.,1953,pp.285.
96 Zhao Y, Liu Y, Liu Q, et al. Materials Letters, 2018, 233, 263.
97 Gao Y L, Dai K M, Huang L, et al. Materials Rports A:Review Papers, 2017, 31(1), 103(in Chinese).
高英力,代凯明,黄亮,等.材料导报:综述篇, 2017, 31(1), 103.
98 Wang Z B, Niu Z Q. New Building Materials, 2017, 44(2), 107(in Chinese).
王志博,牛志强.新型建筑材料, 2017, 44(2), 107.
99 Gao Y L, Dai K M, Li X K, et al. Materials Rports B:Research Papers, 2017, 31(12), 63(in Chinese).
高英力,代凯明,李学坤,等.材料导报:研究篇, 2017, 31(12), 63.
100 Kulinich S A, Honda M, Zhu A L, et al. Soft Matter, 2015, 11(5), 856.
101 Page C L, Treadaway K W J. Nature, 1982, 297(5862), 109.
102 Tittarelli F, Moriconi G. Cement and Concrete Research, 2008, 38, 1354.
103 Ma Q, Tong Z, Wang W, et al. Applied Surface Science,2018,455,748.
104 He S, Wang Z, Hu J, et al. Materials & Design, 2018, 160, 84.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[5] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[6] 陈柯, 孙芬, 梁爽, 张海涛. 基于振动搅拌技术高寒地区基层抗冻性与抗裂性试验研究[J]. 材料导报, 2021, 35(Z1): 291-296.
[7] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[8] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[9] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[10] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[11] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[12] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[13] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[14] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[15] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed