Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23001-23019    https://doi.org/10.11896/cldb.20060146
  无机非金属及其复合材料 |
液体弹珠的微流体操作及工程应用
潘洁1, 赵美蓉1, 孙玉楷1, 路敦强1, CLARENCE Augustine T. H Tee2, 宋乐1, 郑叶龙1
1 天津大学精密仪器与光电子工程学院,天津 300072
2 Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
Microfluidics Operational Techniques and Engineering Applications of Liquid Marbles
PAN Jie1, ZHAO Meirong1, SUN Yukai1, LU Dunqiang1, CLARENCE Augustine T. H Tee2, SONG Le1, ZHENG Yelong1
1 School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
2 Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603,Malaysia
下载:  全 文 ( PDF ) ( 12839KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微流体技术是一种精确操控和检测微量流体的新兴技术,广泛应用于生物、化学、材料等领域的实验及工程中。液体弹珠作为一种新兴的数字微流体平台在近几年快速发展。它是一种将疏水的微纳米级颗粒包裹在液滴表面形成的软物质,体积通常在几微升到几百微升之间。区别于构建特殊表面微结构或化学改性制备的超疏水表面,液体弹珠是通过颗粒层阻隔内部液体与载体的微观接触,构建类似于莱顿弗罗斯特液滴的结构来实现微量液体在固体或液体表面不润湿且稳定存在的目的。
目前的研究已经证明液体弹珠拥有独特优越的物理性能,如液体弹珠表面的颗粒层将固-液接触转化为固-固和固-气接触,因此具有不粘的特性,与载体表面的摩擦很小,在很小的外力作用下就可以实现灵活移动且不污染弹珠内的液体和载体。当表面颗粒呈多层且致密分布时也并非完全阻隔外界环境,在很大程度上能够减缓内部液体的蒸发且具有良好的气体渗透性,而且液体弹珠具有较好的稳固性,往往能够承受30%的可逆线性弹性形变,这些性能使液体弹珠可以作为理想的数字微流体平台。液体弹珠的原材料十分丰富,从而决定了其性状具有灵活的可调控性,所用颗粒的疏水性和形状会直接影响液体弹珠的力学性能,例如棒状颗粒包裹的液体弹珠具有更大的刚度,链状颗粒包裹的液体弹珠具有优越的弹性性能。颗粒的化学性质可以按需赋予液体弹珠不同的响应特性,从而衍生出多种操控手段,主要方式包括静电力、磁力、自推进、光辐射、温度、超声等,完成液体弹珠的精确移动、定位、颗粒层开启和关闭以及释放内部液体的操作。以上特性使液体弹珠能够应用于各种工程中,在细胞组织和微生物的培养以及微型化学反应器方面具有很好的应用前景,同时还被广泛应用于传感器、制药和精密仪器等领域,例如光电传感、污水检测、微型胶囊制备、构建纳米复合透镜以及精准电化学沉积等。同时液体弹珠制备方法较简单,无需复杂仪器设备,具有很高的经济效益。
本文结合近年来液体弹珠相关研究的发展现状介绍了液体弹珠的制备方法、结构特点、材料和不同于纯液滴的性质主要包括有效表面张力、力学稳定性和蒸发速率,归纳了几种主流操作控制液体弹珠移动和释放的手段并分析优势与不足,总结了目前液体弹珠在工程上的主要应用并对其未来的发展趋势和应用前景进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘洁
赵美蓉
孙玉楷
路敦强
CLARENCE Augustine T. H Tee
宋乐
郑叶龙
关键词:  微流体  液体弹珠  超疏水  有效表面张力    
Abstract: Liquid marbles are a soft matter formed by wrapping hydrophobic microscale particles on the surface of a droplet, and the volume is usually between a few microliters and hundreds of microliters, and is constructed by a structure separating the internal liquid and the carrier through a particle layer in achieving the non-wetting and stable existence of trace liquid on solid or liquid surface effect, which is similar to Leidenfrost droplets but differs from the preparation of super-hydrophobic surfaces by construction of special surface microstructures or chemical modification.
Current research has proven that liquid marbles have unique superior physical properties, such as non-viscosity, high elasticity, low friction, slow evaporation, and the ability to interact with external environment. These superior properties enable liquid marbles as the ideal digital microfluidic platform. It has potential applications in microreactors, sensors, pharmaceuticals and other related fields. The preparatory method of liquid marble is relatively simple and does not require complicated instruments or equipment, yet it brings high economic benefits.
This paper reviewed and discussed the methods of preparation, structural characteristics and properties of different materials of the liquid marbles, inclusive of the effective surface tension, mechanical stability and evaporation rate. Several mainstream techniques to control the movement and release of liquid marbles had been reviewed and assessed their advantages and disadvantages. The current main applications of liquid marbles in engineering had been reviewed and summarized with their prospects, potential applications and future development trends.
Key words:  microfluidics    liquid marbles    superhydrophobic    effective surface tension
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  O647.11  
  O647.5  
基金资助: 国家自然科学基金(51805367);天津市自然科学基金(18JCQNJC04800;17JCYBJC19000;18JCZDJC31800)
通讯作者:  zhengyelongby@tju.edu.cn   
引用本文:    
潘洁, 赵美蓉, 孙玉楷, 路敦强, CLARENCE Augustine T. H Tee, 宋乐, 郑叶龙. 液体弹珠的微流体操作及工程应用[J]. 材料导报, 2021, 35(23): 23001-23019.
PAN Jie, ZHAO Meirong, SUN Yukai, LU Dunqiang, CLARENCE Augustine T. H Tee, SONG Le, ZHENG Yelong. Microfluidics Operational Techniques and Engineering Applications of Liquid Marbles. Materials Reports, 2021, 35(23): 23001-23019.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060146  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23001
1 Yan C, Li M, Lu Q H. Progress in Chemistry, 2011, 23(4),41 (in Chinese).
闫超, 李梅, 路庆华. 化学进展, 2011, 23(4),41.
2 Aussillous P, David Quéré.Nature, 2001, 411(6840),924.
3 Tian J, Arbatan R, Li R, et al. Chemical Communications, 2010, 46(26), 4734.
4 Zhao Y, Xu Z, Parhizkar M, et al.Microfluidics and Nanofluidics, 2012, 13(4),555.
5 Liu Z, Fu X, Binks B P, et al. Langmuir, 2015, 31(41), 11236.
6 Ireland P M, Thomas C A, Lobel B T, et al.Frontiers in Chemistry, 2018, 6,280.
7 Ireland P M, Noda M, Jarrett E D, et al. Powder Technology, 2016, 303,55.
8 Liyanaarachchi K R, Ireland P M, Webber G B, et al. Applied Physics Letters, 2013, 103(5),1933.
9 Bhosale P S, Panchagnula M V. Langmuir, 2012, 28(42), 14860.
10 Sreejith K R, Ooi C H, Jin J, et al. Review of Scientific Instrument, 2019, 90, 055102.
11 Li X, Wang Y, Huang J, et al. Applied Physics Letters, 2017, 111,261604.
12 Li X, Shi H, Wang Y, et al.Soft Matter, 2020, 16,4512.
13 Nguyen T H, Hapgood K, Shen W. Chemical Engineering Journal, 2010, 162(1), 396.
14 Bormashenko E, Pogreb R, Whyman G, et al. Langmuir, 2009, 25(4),1893.
15 Huang J, Wang Z, Shi H, et al. Soft Matter, 2020, 16, 4632.
16 Matsukuma D, Watanabe H, Fujimoto A, et al. Bulletin of the Chemical Society of Japan, 2015, 88(1),84.
17 Xue Y, Wang H, Zhao Y, et al. Advanced Materials, 2010, 22(43),4814.
18 Bormashenko E, Pogreb R, Balte R, et al.Petroleum Science,2015,12, 340.
19 Tyowua A T, Mooney J M, Binks B P. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2018, 506(5),288.
20 Sivan V, Tang S Y, O'Mullane A P, et al. Advanced Functional Materials, 2013, 23(2), 144.
21 Sivan V, Tang S Y, O'Mullane A P, et al. Applied Physics Letters, 2014, 105(12),121607.
22 Tang S Y, Sivan V, Khoshmanesh K, et al. Nanoscale, 2013, 5, 5949.
23 Tang X, Tang S Y, Sivan V, et al. Applied Physics Letters, 2013, 103(17),174104.
24 Jeon J, Lee J B, Chung S K, et al. In: Transducers International Solid-state Sensors, Actuators & Microsystems Conference. IEEE, 2015, pp. 069.
25 Zavabeti A, Daeneke T, Chrimes A, et al. Nature Communications, 2016, 7, 12402.
26 Zang D, Chen Z, Zhang Y, et al. Soft Matter, 2013, 9(20),5067.
27 Aussillous P, Quéré D. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences, 2006, 462(2067),973.
28 Ooi C H, Plackowski C, Nguyen A V, et al. Scientific Reports, 2016, 6(1),21777.
29 Bormashenko E, Bormashenko Y, Oleg G. Langmuir, 2010, 26(15),12479.
30 Bormashenko E, Musin A, Whyman G, et al. Colloids & Surfaces A, Physicochemical and Engineering Aspects, 2013, 425,15.
31 Bormashenko E, Pogreb R, Whyman G, et al. Colloids & Surfaces A, Physicochemical and Engineering Aspects, 2009, 351(1-3),78.
32 Arbatan T, Shen W. Langmuir, 2011, 27(21),12923.
33 Celestini F, Kofman R. Physical Review E, 2006, 73(4), 041602.
34 Li X, Wang R, Shi H, et al. Applied Physics Letters, 2018, 113(10),101602.
35 Li X, Wang R, Huang S, et al.Soft Matter, 2018, 14, 9877.
36 Wang R, Li X. Powder Technology, 2020, 368,608.
37 Asare-Asher S, Connor J N, Sedev R.Journal of Colloid and Interface Science, 2015, 449,341.
38 Rendos A, Alsharif N, Kim B L, et al. Soft Matter, 2017,13, 8903.
39 Planchette C, Biance A L, Lorenceau E. EPL, 2012, 97(1), 14003.
40 Liu Z, Zhang Y, Yang T, et al. Applied Physics Letters, 2019, 114(24),243701.1.
41 Azizian S, Fujii S, Kasahara M, et al.Advanced Powder Technology, 2019, 30(2),330.
42 Hu Y, Jiang H, Liu J, et al.Rsc Advances, 2013, 4, 3162.
43 Dandan M, Erbil H Y.Langmuir, 2009, 25(14),836.
44 Tosun A, Erbil H Y. Applied Surface Science, 2009, 256(5),1278.
45 Laborie B, Lachaussée F, Lorenceau E, et al. Soft Matter, 2013,9,4822.
46 Ueno K, Hamasaki S, Wanless E J, et al.Langmuir, 2014, 30(11),3051.
47 Erbil H Y. Advances in Colloid & Interface Science, 2012, 170(1-2),67.
48 Vadivelu R K, Kamble H, Munaz A, et al. Scientific Reports, 2017, 7(1),12388.
49 Cengiz U, Erbil H Y.Soft Matter, 2013, 9(37),8980.
50 L Zhang, D Cha, P Wang. Advanced Materials, 2012, 24(35), 4756.
51 Ooi C H, Nguyen A V, Evans G M, et al. Scientific Reports,2016, 6, 38346.
52 Nguyen N.Langmuir, 2013, 29(45),13982.
53 Khaw M K, Ooi C H, Mohd-Yasin F, et al. Nguyen N.Lab on a Chip, 2016, 16, 2211.
54 Zhao Y, Xu Z, Parhizkar M, et al.Microfluidics and Nanofluidics, 2012, 13(4),555.
55 Jeong J, Seo J, Chung S K, et al. Materials Research Express, 2020, 7,015708.
56 Jeong J, Seo J, Chung S K, et al. In: International Conference on Micro Electro Mechanical Systems (MEMS). IEEE,2019, pp. 409.
57 Jin J, Ooi C H, Dao D V, et al. Soft Matter, 2018, 14.
58 Liu Z, Fu X, Binks B, Nguyen N. Soft Matter, 2016, 13(1),119.
59 Liu Z, Yang T, Huang Y, et al. Advanced Functional Materials, 2019, 29(19), 1901101.
60 Zhang Y, Fu X, Guo W, et al.Lab on a Chip, 2019, 19, 3526.
61 Bormashenko E, Bormashenko Y, Pogreb R, et al. Langmuir, 2011, 27(1),7.
62 Bormashenko E, Pogreb R, Balter R, et al. Applied Physics Letters, 2012, 100(15),1.
63 Ghanbari M, Rezazadeh G. Sensing and Imaging, 2019, 20(1), 20.
64 Ghanbari M, Rezazadeh G.Microsystem Technologies, 2020, 26, 617.
65 Fu X, Zhang Y, Binks B P, et al. ACS Applied Materials & Interfaces, 2018, 10(41), 34822.
66 Jin J, Ooi C H, Sreejith K R, et al. Microfluidics and Nanofluidics, 2019, 23(7),85.
67 Bormashenko E, Bormashenko Y, Grynyov R, et al. Journal of Physical Chemistry C, 2015, 119(18),9910.
68 Ooi C H, Nguyen A, Geoffrey M. E, et al. RSC Advances, 2015, 5(122),101006.
69 Tan T T Y, Ahsan A, Reithofer M R, et al. Langmuir, 2014, 30(12),3448.
70 Paven M, Mayama H, Sekido T, et al. Advanced Functional Materials, 2016, 26(19), 3199.
71 Asaumi Y, Rey M, Vogel N,et al. Langmuir, 2020, 36(10), 2695.
72 Chu Y, Liu F, Qin L, et al.ACS Applied Materials & Interfaces, 2016, 8(2),1273.
73 Kavokine N, Anyfantakis M, Morel M, et al. Angewandte Chemie, 2016, 128(37),11349.
74 Inoue M, Fujii S, Nakamura Y, et al. Polymer Journal, 2011, 43(9),778.
75 Yusa S I, Morihara M, Nakai K, et al.Polymer Journal, 2014, 46(3),145.
76 Zang D, Li J, Chen Z, et al. Langmuir, 2015, 31(42), 11502.
77 Tyowua, A T, Ahor F, Yiase S G, et al. SN Applied Sciences, 2020, 2,345.
78 Li M, Tian J, Li L, et al.Chemical Engineering Science, 2013, 97,337.
79 Sheng Y, Sun G, Wu J, et al.Angewandte Chemie, 2015, 127(24),7118.
80 Luo X, Yin H, Li X,et al. Chemical Communications, 2018, 54,9119.
81 Miao Y E, Lee H K, Chew W S, et al. Chemical Communications, 2014, 50(44),5923.
82 Arbatan T, Li L, Tian J, et al. Advanced Healthcare Materials, 2012, 1(1),80.
83 Tian J, Fu N, Chen X D, et al.Colloids and Surfaces B, Biointerfaces, 2013, 106(1),187.
84 Serrano M C, Nardecchia S, Gutiérrez M C, et al. Applied Materials & Interface, 2015, 7(6), 3854.
85 Arbatan T, Al-Abboodi A, Sarvi F, et al. Advanced Healthcare Materials, 2012, 1(4),467.
86 Sreejith K R, Gorgannezhad L, Jin J, et al. Micromachines, 2020, 11(3), 242.
87 Bormashenko E, Musin A. Applied Surface Science, 2009, 255(12),6429.
88 Adamatzky A, Tsompanas M A, Draper T C, et al.ChemPhysChem, 2019, 21(1),90.
89 Zeng H, Zhao Y. Applied Physics Letters, 2010, 96(11),1.
90 Bormashenko E, Pogreb R, Musin A. Journal of Colloid & Interface Science, 2012, 366(1),196.
91 Janská P, Rychecky O, Zadražil A, et al.Journal of Pharmaceutical Sciences, 2019, 108(6), 2136.
92 Savkare A D, Bhavsar M R, Gholap V D, et al. International Journal of Pharmaceutics, 2017,8(7),2768.
93 Shin D, Huang T, Neibloom D, et al. ACS Applied Materials & Interfaces, 2019, 11(37),34478.
94 Shailendar S, Sundaram M M.Materials and Manufacturing Processes, 2016,31(1),81.
95 Gu H, Ye B, Ding H, et al. Journal of Materials Chemistry, 2015, 3(26),6607.
[1] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[2] 唐宏, 董兵海, 艾虎. 透明超疏水涂层制备技术研究进展[J]. 材料导报, 2021, 35(Z1): 156-159.
[3] 余传明, 曾圣威, 刘叶原, 司徒紫晴, 刘可, 田丽芬, 罗文静, 梁远维, 李泳. 高内相乳液法制备P(St-DVB)多孔吸油材料及其在油水分离中的应用[J]. 材料导报, 2021, 35(4): 4200-4204.
[4] 韦文厂, 刘峥, 魏润芝, 刁娜, 吕奕菊. 基于MOFs材料的超疏水复合涂层的制备及其对碳钢的防腐蚀研究[J]. 材料导报, 2021, 35(20): 20068-20075.
[5] 熊静, 李亚丹, 伍亮, 肖刚, 王鑫, 梁莉萍, 乔琰, 鲁志松, 余玲. 基于亲水性可控棉线有效分离苏丹I和罗丹明B[J]. 材料导报, 2021, 35(20): 20166-20175.
[6] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[7] 杨福生, 张振宇, 李云清, 陈永哲, 任永忠, 马乐, 杨武. 层层自组装法制备超疏水/超亲油棉织物及其油水分离性能[J]. 材料导报, 2021, 35(12): 12190-12195.
[8] 张争奇, 强亚奎, 张世豪, 王东, 赵富强. 沥青路面超疏水抗凝冰涂层设计及性能[J]. 材料导报, 2021, 35(10): 10073-10079.
[9] 赵毅, 秦旻, 文凯琪, 梁乃兴, 王亚茹. 沥青路面超疏水抗凝冰材料研究进展[J]. 材料导报, 2021, 35(1): 1141-1153.
[10] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[11] 杨雪, 苏静, 王鸿博. 基于HDTMS的一步法构筑棉织物超疏水表面[J]. 材料导报, 2020, 34(Z1): 542-547.
[12] 杨福生, 张妍, 刘小斌, 陈永哲, 杨武. 种子生长法构筑超疏水-超亲油滤纸及其在油水分离中的应用[J]. 材料导报, 2020, 34(4): 4132-4136.
[13] 曹颐戬,王聪,王丽琴. 仿生超疏水材料及其在文物保护中的应用综述[J]. 材料导报, 2020, 34(3): 3178-3184.
[14] 郑博源, 底月兰, 王海斗, 康嘉杰, 刘韬. 激光加工制备金属基体超疏水表面的研究进展[J]. 材料导报, 2020, 34(23): 23109-23120.
[15] 刘帅卓, 张颖, 范雷倚, 张骞, 周莹. 活性炭/聚四氟乙烯改性三聚氰胺海绵及其在油水分离中的应用[J]. 材料导报, 2020, 34(17): 17099-17104.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed