Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23109-23120    https://doi.org/10.11896/cldb.19090218
  金属与金属基复合材料 |
激光加工制备金属基体超疏水表面的研究进展
郑博源1,2, 底月兰2, 王海斗1,2, 康嘉杰1, 刘韬2
1 中国地质大学(北京) 工程技术学院,北京 100083
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Research Progress in Preparation of Super-hydrophobic Surface of Metal Matrix by Laser Processing
ZHENG Boyuan1,2, DI Yuelan2, WANG Haidou1,2, KANG Jiajie1, LIU Tao2
1 School of Engineering and Technology, China University of Geosciences (Beijing),Beijing 100083, China
2 National Key Laboratory for Remanufacturing, Academy of Army Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 24061KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属材料使用广泛,但容易遭受腐蚀。在金属基体表面制备超疏水涂层,可以隔绝腐蚀介质,提高金属的耐腐蚀性能、耐污性能。此外,超疏水涂层还能在防覆冰、抑菌等方面应用,赋予金属材料更多的功能和更广阔的应用前景。
想要达到超疏水,一方面需要低表面自由能,使液滴不易在表面铺展;另一方面,需要构筑粗糙的微纳米结构,以便于存留空气,增大气液接触面积。制备超疏水涂层的方法有很多,但由于金属材料硬度大,熔点高等原因,很多常规的加工方法并不适用。对于金属材料,常见的超疏水表面制备方法有:化学刻蚀、电化学方法、水热法、气相沉积等。但这些方法可控性、稳定性差,常常难以加工出预期的表面结构。激光刻蚀作为一种制备超疏水表面的方法,具有环保、可控、稳定等特点,可以直接在表面制作特定微纳米结构,适用于金属材料加工,近年来受到广泛关注。
通过改变激光加工参数和扫描路径,可以加工出不同的表面微纳米结构。关于各种激光加工参数对表面结构影响的研究不少。常见的激光加工参数有光斑参数、能量密度、脉冲个数、扫描速度、扫描间距、光斑搭接率等。这些参数都会对表面结构造成不同的影响。目前使用激光制备出的疏水性能良好的表面微纳米结构有微米方柱结构、微米网格结构、微米沟槽结构、微米正弦突起结构、高斯点阵结构、纳米周期波纹结构。
本文从超疏水理论出发,介绍了各种激光参数对表面结构的影响,不同微纳米结构的特点和疏水性能,以及刻蚀后的表面处理。最后,对激光制备金属基体超疏水表面的要点进行了总结,并梳理了一些目前尚且存在的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑博源
底月兰
王海斗
康嘉杰
刘韬
关键词:  激光刻蚀  超疏水  金属基体  工艺参数  微纳结构    
Abstract: Metal materials are widely used, but are susceptible to corrosion. The super-hydrophobic coating prepared on the surface of the metal substrate can corrode the corrosive medium and improve the corrosion resistance and stain resistance of the metal. In addition, the super-hydrophobic coating can also be applied in anti-icing and antibacterial applications, giving the metal material a wider range of functions and application scenarios.
In order to achieve superhydrophobicity, firstly, low surface free energy is required, so that the droplets are not easily spread on the surface; secondly, it is necessary to construct a rough micro-nano structure in order to retain air and increase the gas-liquid contact area. There are many methods for preparing superhydrophobic coatings, but many conventional processing methods are not suitable due to the high hardness of the metal materials and the high melting point. For metal materials, common superhydrophobic surface preparation methods are: chemical etching, electrochemical methods, hydrothermal methods, vapor deposition, and so on. However, these methods have poor controllability and stability, and it is often difficult to process the desired surface structure. As a method for preparing super-hydrophobic surface, laser etching has the cha-racteristics of environmental protection, controllability and stability. It can directly form specific micro-nano structures on the surface and is suitable for metal material processing and has received extensive attention in recent years.
Different laser processing parameters and scanning paths can be used to machine different surface micro-nano structures. Research on the effects of various laser processing parameters on surface structure has been carried out. Common laser processing parameters include: spot parameters, energy density, number of pulses, scanning speed, scanning pitch, and spot lap rate. These parameters will have different effects on the surface structure. At present, surface micro-nanostructures prepared by laser using good hydrophobic properties include micro-square column structure, micro-mesh structure, micro-groove structure, micro-sinusoidal protrusion structure, Gaussian lattice structure, and laser-induced periodic surface structure.
Based on the theory of super-hydrophobicity, this paper introduces the influence of various laser parameters on the surface structure, the characteristics and hydrophobic properties of different micro-nanostructures, and the surface treatment after etching. Finally, this paper summarizes the main points of laser preparation of super-hydrophobic surface of metal matrix, and sorts out some existing problems.
Key words:  laser etching    super-hydrophobic    metal matrix    process parameters    micro/nano structure
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  TN24  
基金资助: 国防科技创新特区前沿探索项目(19-163-21-TS-001-009-01);国防科技基础加强计划技术领域基金项目(2020-JCJQ-JJ-378)
通讯作者:  dylxinjic031@163.com;wanghaidou@aliyun.com   
作者简介:  郑博源,2017年毕业于中国地质大学(北京),获得学士学位。现为中国地质大学(北京)硕士研究生,主要研究领域为超疏水材料。
底月兰,1986年生,博士,助理研究员,研究方向为表面工程与再制造工程。
王海斗,2003年博士毕业于清华大学机械工程系,陆军装甲兵学院装备再制造技术国防科技重点实验室的教授和常务副主任。目前的研究领域包括表面工程、再制造和摩擦学,其中主要侧重于表面涂层和固体薄膜润滑的使用寿命评估。
引用本文:    
郑博源, 底月兰, 王海斗, 康嘉杰, 刘韬. 激光加工制备金属基体超疏水表面的研究进展[J]. 材料导报, 2020, 34(23): 23109-23120.
ZHENG Boyuan, DI Yuelan, WANG Haidou, KANG Jiajie, LIU Tao. Research Progress in Preparation of Super-hydrophobic Surface of Metal Matrix by Laser Processing. Materials Reports, 2020, 34(23): 23109-23120.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090218  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23109
1 Barthlott W, Neinhuis C. Planta,1997,202,1.
2 Liu B, Xu W F, Li H, et al. Chemical Journal of Chinese Universities,2013,34(9),2191(in Chinese).
刘兵,徐万飞,李红,等.高等学校化学学报,2013,34(9),2191.
3 Feng L, Zhang Y, Cao Y, et al. Soft Matter,2011,7,2977.
4 Feng L, Zhang Y, Xi J, et al. Langmuir,2008,24,4114.
5 Zheng Y, Gao X, Jiang L. Soft Matter,2007,3,178.
6 Wu D, Wang J N, Wu S Z, et al. Advanced Functional Materials,2011,21,2927.
7 Gao X, Jiang L. Nature,2004,432,36.
8 Liu T, Lau K T, Chen S G, et al. Advanced Materials Research,2008,47,173.
9 Herbots N, Watson C F, Culbertson E J, et al. MRS Advances,2016,1,2141.
10 Zhang H, Lamb R, Lewis J. Science and Technology of Advanced Mate-rials,2005,6,236.
11 Wei C Q, Jin B Y, Zhang Q H, et al. Journal of Alloys and Compounds,2018,765,721.
12 Ding S, Xiang T, Li C, et al. Materials & design,2016,117,280.
13 Nagai H, Irie T, Takahashi J, et al. Biosensors and Bioelectronics,2007,22,1968.
14 Gao H, Sun P, Zhang Y, et al. Surface and Coatings Technology,2018,339,147.
15 Ramos Chagas G, Morán Cruz, Gabriela M, et al. Applied Surface Science,2018,452,352.
16 Long J, Fan P, Jiang D, et al. Advanced Materials Interfaces,2016,3,1600641.
17 Young T. Philosophical Transactions of the Royal Society of London,1805,95,65.
18 Wenzel, Robert N. Transactions of the Faraday Society,1936,28,988.
19 Cassie A B D, Baxter S. Transactions of the Faraday Society,1944,40,546.
20 Herminghaus S. Europhysics Letters,2000,52,165.
21 Nosonovsky M, Bhushan B. Microelectronic Engineering,2007,84,382.
22 Nosonovsky M, Bhushan B. Journal of Physics Condensed Matter,2008,20,395005.
23 Patankar, Neelesh A. Langmuir,2003,19(4),1249.
24 Bhushan B, Jung Y C. Journal of Physics Condensed Matter,2008,20,225010.
25 Mannion P T, Magee J, Coyne E, et al. Applied Surface Science,2004,233,275.
26 Yuan D Q, Zhou M, Cai L, et al. Spectroscopy and Spectral Analysis,2009(6),1454(in Chinese).
袁冬青,周明,蔡兰,等.光谱学与光谱分析,2009(6),1454.
27 Zhou S Q, Ma G J, Wang C H, et al. Chinese Journal of Lasers,2016(9),76(in Chinese).
周树清,马国佳,王春华,等.中国激光,2016(9),76.
28 Moradi S, Kamal S, Englezos P, et al. Nanotechnology,2013,24,415302.
29 Fu X, Zhang F, Jiang M, et al. Laser Technology,2014,38(4),435(in Chinese).
傅茜,张菲,蒋明,等.激光技术,2014,38(4),435.
30 Li T. A study on process technology and surface wettability of picosecond laser texturing metal. Master’s Thesis, Huazhong University of Science and Technology, China,2017(in Chinese).
李田.金属表面皮秒激光纹理刻蚀工艺及润湿性能研究.硕士学位论文,华中科技大学,2017.
31 Wu X F. Research on the wettability of micro/nano structured solid surface fabricated by femtosecond laser. Master’s Thesis, Changchun University of Science and Technology, China,2017(in Chinese).
吴先福.飞秒激光制备固体润湿性能微纳结构表面的研究.硕士学位论文,长春理工大学,2017.
32 Zhou S Q. The research of bionic hydrophobic surface induced by femtosecond laser. Master’s Thesis, Hefei University of Technology, China,2017(in Chinese).
周树清.仿生疏水表面飞秒激光制备研究.硕士学位论文,合肥工业大学,2017.
33 Zhang S J, Li Y, Liu Z P, et al. Applied Physics Letters,2014,105,061101.
34 Pou P, Del Val J, Riveiro A, et al. Applied Surface Science,2019,475,896.
35 Zhao X, Xue Y, Yang H, et al. Surface Engineering,2019,1,267.
36 Juanjuan S, Deren W, Leyong H, et al. Applied Surface Science,DOI:S0169433218315551.
37 Song Y, Wang C, Dong X, et al. Optics & Laser Technology,2018,102,25.
38 Sarbada S, Shin Y C. Applied Surface Science,2017,405,465.
39 Cai Y K, Chang W L, Luo X C, et al. Precision Engineering,2018,52,266.
40 Li S Y. Construction of the bionic-structured superhydrophobic surface and antimicrobial application. Master’s Thesis, Jilin University, China,2018(in Chinese).
李淑一.仿生结构化超疏水表面的构筑与抗菌应用.硕士学位论文,吉林大学,2018.
41 Long J, Zhong M, Fan P, et al. Journal of Laser Applications,2015,27,S29107.
42 Yan X, Huang Z, Sett S, et al. ACS Nano,2019,13,4160.
43 Ta D V, Dunn A, Wasley T J, et al. Applied Surface Science,2015,357,248.
44 Sciancalepore C, Gemini L, Romoli L, et al. Surface and Coatings Technology,2018,352,370.
45 Trdan U, Hoevar M, Gregori P. Corrosion Science,2017,123,21.
46 Kietzig A M, Hatzikiriakos S G, Englezos P. Langmuir,2009,25,4821.
47 Ngo C V, Chun D M. Applied Surface Science,2017,409,232.
48 Long J, Zhong M, Zhang H, et al. Journal of Colloid and Interface Science,2014,441C,1.
49 Yang Z, Liu X, Tian Y. Journal of Colloid and Interface Science,2019,533,268.
50 Huang J Y, Wei S B, Zhang L X, et al. Materials,2019,12,1155.
51 Wang X C, Wang B, Xie H, et al. Journal of Physics D Applied Physics,2018,51,115305.
52 Wu B, Zhou M, Li B J, et al. Journal of Functional Materials,2013,44(24),3658(in Chinese).
吴勃,周明,李保家,等.功能材料,2013,44(24),3658.
[1] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[2] 杨雪, 苏静, 王鸿博. 基于HDTMS的一步法构筑棉织物超疏水表面[J]. 材料导报, 2020, 34(Z1): 542-547.
[3] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[4] 杨福生, 张妍, 刘小斌, 陈永哲, 杨武. 种子生长法构筑超疏水-超亲油滤纸及其在油水分离中的应用[J]. 材料导报, 2020, 34(4): 4132-4136.
[5] 曹颐戬,王聪,王丽琴. 仿生超疏水材料及其在文物保护中的应用综述[J]. 材料导报, 2020, 34(3): 3178-3184.
[6] 成烨, 还大军, 李勇, 刘洪全, 周洲. AS4D/PEEK热塑性复合材料激光固结缠绕工艺参数优化[J]. 材料导报, 2020, 34(22): 22190-22194.
[7] 刘帅卓, 张颖, 范雷倚, 张骞, 周莹. 活性炭/聚四氟乙烯改性三聚氰胺海绵及其在油水分离中的应用[J]. 材料导报, 2020, 34(17): 17099-17104.
[8] 张静, 许海波, 黄悦, 周忠华. 双层透明耐磨超疏水膜层的制备及界面结构控制[J]. 材料导报, 2020, 34(12): 12005-12009.
[9] 闫秋会, 夏卫东, 罗杰任, 霍鑫. SiO2气凝胶的常压干燥制备与性能表征[J]. 材料导报, 2020, 34(12): 12173-12177.
[10] 易金权, 曾凯, 邢保英, 冯煜阳, 翟停停. DP780高强钢胶接点焊的多元非线性回归模型[J]. 材料导报, 2020, 34(11): 11071-11075.
[11] 商富强, 黄丽清, 李刚, 张宇, 蔡亚坤, 王慧敏, 董伟丽, 张磊, 刘悠. 超亲水和具有不同黏性的超疏水阳极氧化铝膜的制备[J]. 材料导报, 2020, 34(10): 10003-10007.
[12] 庄煜, 郭艳玲, 李健, 姜凯译, 于跃强, 张慧. 仿血管聚氨酯基复合材料的激光烧结工艺研究[J]. 材料导报, 2020, 34(10): 10177-10181.
[13] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[14] 刘仁臣, 陆静. KrF激光刻蚀制备300 nm自支撑聚酰亚胺膜[J]. 材料导报, 2019, 33(Z2): 580-583.
[15] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed