Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12005-12009    https://doi.org/10.11896/cldb.19060082
  无机非金属及其复合材料 |
双层透明耐磨超疏水膜层的制备及界面结构控制
张静1, 许海波1, 黄悦1,2, 周忠华1,2
1 厦门大学材料学院,厦门 361005
2 福建省特种先进材料重点实验室(厦门大学),厦门 361005
Preparation and Interface Structure Control of Bilayer Transparent Wear Resistant Superhydrophobic Coatings
ZHANG Jing1, XU Haibo1, HUANG Yue1,2, ZHOU Zhonghua1,2
1 College of Materials, Xiamen University, Xiamen 361005, China
2 Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
下载:  全 文 ( PDF ) ( 4185KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以正硅酸乙酯为前驱体,以溶胶-凝胶法制备的SiO2溶胶作为黏结剂,首先将SiO2溶胶在玻璃上旋涂成膜作为底层黏结层,再将亲水型气相SiO2纳米颗粒与SiO2溶胶混合后在底层上旋涂成膜作为上层微纳米凹凸膜层,制得双层透明耐磨微纳米凹凸膜层;同时采用KH560嫁接改性的SiO2纳米颗粒替代未处理的SiO2纳米颗粒,制得改性双层透明耐磨微纳米凹凸膜层,研究了膜层制备工艺以及SiO2纳米颗粒改性对膜层界面结构的影响。结果表明,当旋涂转速为400 r/min、膜厚为1.39 μm时,底层黏结层具有优异的透光性和耐磨性;紫外臭氧照射20 min后,水接触角为0°,形成高化学活性的亲水性表面。经氟硅烷表面修饰,双层透明耐磨微纳米凹凸膜层和改性双层透明耐磨微纳米凹凸膜层的水接触角分别为151.23°、150.82°,呈现超疏水性;在1 kg/cm2的荷载作用下,往复打磨200次后,它们的水接触角分别达到121.97°和126.45°,平均面粗糙度保持率高达51.62%和66.33%,下降幅度小,呈现优良的耐磨特性。耐磨特性与界面处的空隙、孔洞密切关联;SiO2纳米颗粒的改性能够有效地减少界面处的空隙、孔洞,提升膜层的耐磨特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张静
许海波
黄悦
周忠华
关键词:  微纳米凹凸膜层  界面结构  透明  耐磨  超疏水    
Abstract: In this paper, SiO2 sol prepared with tetraethyl orthosilicate as precursor was used as a binder. SiO2 sol was spin coated on glass as the bottom bonding layer, then hydrophilic SiO2 nanoparticles were mixed with SiO2 sol and coated on the bottom as the upper layer to prepare bilayer transparent wear-resistant coatings with micro/nano hierarchical structure. Meanwhile, KH560 modified SiO2 nanoparticles were used to replace untreated SiO2 nanoparticles to prepare modified bilayer transparent wear-resistant coatings, and the effects of the coating process and the modification of SiO2 nanoparticles on the interface structure were studied. Results show that SiO2 sol bottom layer has excellent transparency and wear resistance when the spinning speed is 400 r/min and the film thickness is 1.39 μm. After 20 minutes of ultraviolet ozone irradiation, water contact angle (WCA) of SiO2 sol bottom layer is 0°, forming a hydrophilic surface with high chemical activity. The prepared bilayer and modified bilayer transparent wear-resistant coatings show superhydrophobicity, and the WCA are 151.23° and 150.82°, respectively, when modified by fluoroalkyl silane. WCA can still reach 121.97° and 126.45° after 200 cycles of mechanical abrasion under the load of 1 kg/cm2, respectively. The average surface roughness of the coatings decreases slightly after abrasion, and the roughness retentions reach 51.62% and 66.33% respectively, sho-wing excellent wear resistance. The wear resistance of micro/nano hierarchical structural coatings is closely related to voids and holes on the interface structure, and the modification of SiO2 nanoparticles can effectively reduce the voids and holes on the interface, thus improve the wear resistance.
Key words:  micro/nano hierarchical film    interface structure    transparency    wear resistance    superhydrophobicity
                    发布日期:  2020-05-29
ZTFLH:  TB321  
基金资助: 福建省科技重大专项(2014HZ0005)
通讯作者:  zzh@xmu.edu.cn   
作者简介:  张静,2016年6月毕业于中国计量大学,获得工学学士学位。于2016年9月至2019年6月在厦门大学攻读材料学硕士学位,主要从事汽车玻璃表面功能化超疏水方向的研究。
周忠华,厦门大学材料学院教授。1998年毕业于日本三重大学,无机材料科学专业博士。1998—2007年任日本东芝陶瓷株式会社开发研究所主任研究员。2007至今任厦门大学材料学院教授,主要从事玻璃表面功能化、环境净化材料及其应用、纳米材料合成及其应用的研究。
引用本文:    
张静, 许海波, 黄悦, 周忠华. 双层透明耐磨超疏水膜层的制备及界面结构控制[J]. 材料导报, 2020, 34(12): 12005-12009.
ZHANG Jing, XU Haibo, HUANG Yue, ZHOU Zhonghua. Preparation and Interface Structure Control of Bilayer Transparent Wear Resistant Superhydrophobic Coatings. Materials Reports, 2020, 34(12): 12005-12009.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060082  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12005
1 Guo Z G, Liu W M, Su B L. Journal of Colloid & Interface Science,2010,353(2),335.
2 Li Y, Li X, Guo W J, et al. Science China Chemistry,2016,59(12),1.
3 Wang N, Xiong D S, Pan S, et al. Applied Surface Science,2016,389,354.
4 Xu J, Liu Y S, Du W L, et al. Thin Solid Films,2017,631,193.
5 He Z K, Meng M, Xu X C, et al. Applied Surface Science,2012,258(7),2544.
6 Shang H M, Wang Y, Limmer S J, et al. Thin Solid Films,2005,472(1-2),37.
7 Mahadik S A, Pedraza F, Vhatkar R S. Journal of Alloys & Compounds,2016,663(16),487.
8 Ipekci H H, Arkaz H H, Onses M S, et al. Surface & Coatings Technology,2016,299,162.
9 Wong W S Y, Stachurski Z H, Nisbet D R, et al. ACS Applied Materials & Interfaces,2016,8(21),13615.
10 Kim E K, Lee C S, Kim S S. Journal of Colloid & Interface Science,2012,368(1),599.
11 Xu Q F, Wang J N, Sanderson K D. Journal of Materials Chemistry,2010,20(28),5961.
12 Wang C Z, Tang F, Li Q, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects,2017,514,236.
13 Lu Y, Sathasiyam S, Song J L, et al. Science,2015,6226(347),1132.
14 Cai C, Sang N, Teng S, et al. Surface & Coatings Technology,2016,307,366.
15 Luo G, Jin Z, Dong Y, et al. Surface Engineering,2018,34(2),139.
16 Wei M Y, Wang X M, Qing S G, et al. Materials Review B:Research Papers,2012,26(7),39(in Chinese).
魏美英,王新敏,青双桂,等.材料导报:研究篇,2012,26(7),39.
17 Yang G, Deng A Z, Chen J B. Surface Technology,2017,46(8),49(in Chinese).
杨光,邓安仲,陈静波.表面技术,2017,46(8),49.
18 Shen K B, Yang H, Liu J, et al. Materials Science Forum,2012,743-744,377.
19 Martin S, Bhushan B. Journal of Colloid & Interface Science,2017,488,118.
20 Cassie A B D, Baxter S. Transactions of the Faraday Society,1944,40,546.
21 Cassie A B D, Baxter S. Nature,1945,155(3923),21.
[1] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[2] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[3] 杨福生, 张妍, 刘小斌, 陈永哲, 杨武. 种子生长法构筑超疏水-超亲油滤纸及其在油水分离中的应用[J]. 材料导报, 2020, 34(4): 4132-4136.
[4] 安世崇,黄茜,陈沛润,张力,赵颖,张晓丹. 半透明钙钛矿及叠层太阳电池中的透明电极研究综述[J]. 材料导报, 2020, 34(3): 3069-3079.
[5] 曹颐戬,王聪,王丽琴. 仿生超疏水材料及其在文物保护中的应用综述[J]. 材料导报, 2020, 34(3): 3178-3184.
[6] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[7] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[8] 闫秋会, 夏卫东, 罗杰任, 霍鑫. SiO2气凝胶的常压干燥制备与性能表征[J]. 材料导报, 2020, 34(12): 12173-12177.
[9] 商富强, 黄丽清, 李刚, 张宇, 蔡亚坤, 王慧敏, 董伟丽, 张磊, 刘悠. 超亲水和具有不同黏性的超疏水阳极氧化铝膜的制备[J]. 材料导报, 2020, 34(10): 10003-10007.
[10] 张丛, 曹剑武, 林广庆, 王成, 刘发付, 郭建斌, 郭在在, 乔光利, 庄杰, 黄维平. 烧结温度对AlON性能的影响[J]. 材料导报, 2019, 33(Z2): 158-160.
[11] 宋涛, 杨杰, 赵松海, 尚海涛, 白超超. 石膏基自流平砂浆耐磨性能研究[J]. 材料导报, 2019, 33(Z2): 239-241.
[12] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[13] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[14] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[15] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed