Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3069-3079    https://doi.org/10.11896/cldb.19010225
  无机非金属及其复合材料 |
半透明钙钛矿及叠层太阳电池中的透明电极研究综述
安世崇1,2,黄茜1,2,,陈沛润1,2,张力1,2,赵颖1,2,张晓丹1,2
1 南开大学光电子薄膜器件与技术研究所,天津 300071
2 天津市光电子薄膜器件与技术重点实验室,天津 300071
Research Progress of Transparent Electrodes in Semi-transparent Perovskite and Tandem Solar Cells
AN Shichong1,2,HUANG Qian1,2,,CHEN Peirun1,2,ZHANG Li1,2,ZHAO Ying1,2,ZHANG Xiaodan1,2
1 Institute of Optoelectronic Thin Film Devices and Technology,Nankai University,Tianjin 300071,China
2 Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin,Tianjin 300071,China
下载:  全 文 ( PDF ) ( 29532KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钙钛矿太阳电池由于具有独特的光电性能及制造工艺简单、低成本等特点而引起人们极大的关注。在钙钛矿太阳电池出现后的短短几年之内,其效率取得了突飞猛进的发展。在这个过程中,半透明钙钛矿太阳电池由于应用潜力巨大也受到越来越多的关注。特别是其与传统的硅电池或者铜铟镓硒电池组成的叠层太阳电池,由于其能够更加合理地利用太阳光谱而被认为是提升太阳电池光电转换效率的一条有效途径。到目前为止,半透明钙钛矿太阳电池的最高效率已达17.9%,叠层太阳电池的最高效率已达25.5%。顶部透明电极是半透明钙钛矿及叠层太阳电池的关键研究内容之一。对半透明钙钛矿及叠层太阳电池来说,理想的顶部透明电极应具有高透过率、低电阻、良好的化学稳定性以及能够在低温下制备等特点。截至目前,多种透明电极已经被应用于半透明钙钛矿及叠层太阳电池中,包括银纳米线、碳纳米管、超薄金属、石墨烯、导电聚合物以及透明导电氧化物等。银纳米线透明电极的光电性能良好,但稳定性较差,易与钙钛矿中的卤离子反应导致器件恶化,且在空气中易被氧化和腐蚀。超薄金属电极往往不能同时具有较高的导电性和光学透过率,需要引入合适的缓冲层来促使其均匀生长,但同样存在稳定性较差的问题。碳基透明电极的稳定性很强,但是其光电性能有待提高。透明导电氧化物具有良好的光电性能和稳定性,但往往采用溅射的方式制备,在溅射的过程中容易损伤钙钛矿活性层,需要引入合适的缓冲层。本文归纳了应用于半透明钙钛矿及叠层太阳电池中的透明电极的研究进展,分别对透明电极的种类、光电性能、制备工艺进行了系统的介绍,对比了各种透明电极光电性能及制备工艺的优缺点,分析了它们在研究中面临的问题并展望了其发展前景,以期为应用于半透明钙钛矿及叠层太阳电池的透明电极研究提供有益的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安世崇
黄茜
陈沛润
张力
赵颖
张晓丹
关键词:  透明电极  半透明钙钛矿太阳电池  叠层太阳电池    
Abstract: Recent progress in organic-inorganic halide perovskite solar cells (PSCs) has attracted great attention due to their impressive photovoltaic properties, and easy device manufacturing with low cost solution processes, emerging as one of the most promising and intriguing high efficiency solar cells. One of the interesting features of these high efficiency solar cells is the possibilities of making semitransparent PSCs, exciting future applications in building integrated photovoltaics and wearable electronics. In particular, semitransparent PSCs are also useful as the upper sub-cell in tandem applications when combined with conventional silicon or CIGS solar cells, which considering to be an effective way to further improve the photoelectric conversion efficiency. The certified power conversion efficiency (PCE) of semitransparent PSCs and tandem solar cells has recently exceeded 17.9% and 25.5% respectively.
Transparent electrode is one of the key issues for the development of semitransparent PSCs and tandem solar cells. An ideal transparent electrode should meet the following requirements: low sheet resistance, superior transparency and good chemical stability. Moreover, a low-temperature process would be favoured. Up to now, a variety of transparent electrodes have been exploited, including silver nanowires, carbon nanotubes, ultra-thin metals, graphene, conductive polymers and transparent conductive oxides. Despite the outstanding features of high transmittance and low sheet resistance from silver nanowire based transparent electrodes, their applications in PSCs as window electrodes encounter significant obstacles due to the stability issue brought by the corrosion of halogen species from perovskite layer. The transparency and conduc-tance of the metal films cannot meet the requirements of the devices simultaneously, and a suitable buffer layer is required to promote its uniform growth. In addition, it also has the problem of poor stability. While the conductivity and transparency of carbon-based transparent electrode need to be improved. The transparent conductive oxide has good photoelectric properties and stability, but it is often prepared by sputtering. The perovskite active layer is easily damaged during sputtering, so a suitable buffer layer needs to be introduced.
Here, a comprehensive overview of recent research progresses and perspectives on the related materials is provided. We strive to show a deep understanding of the reported strategies for transparent electrode and focus on the problems confronting the transparent electrodes for semitransparent PSCs and tandem solar cells. An encouraging prospect could be expected for the both development of transparent electrode and PSCs.
Key words:  transparent electrode    semi-transparent perovskite solar cell    tandem solar cell
                    发布日期:  2020-01-03
ZTFLH:  TM914.4+1  
基金资助: 国家重点研发计划项目(2018YFB1500103;2018YFB1500104;2018YFB1500105);国家自然科学基金(61474066;61674084);天津市自然科学基金(15JCYBJC21200);天津市军民融合项目(18ZXJMTG00220);高等学校学科创新引智计划(B16027);光学信息技术科学教育部重点实验室开放基金(2017KFKT013);中央高校基本科研业务费专项资金(63191101)
通讯作者:  carolinehq@nankai.edu.cn   
作者简介:  安世崇,2016年6月毕业于天津工业大学,获得工学学士学位。现为南开大学光电子薄膜器件与技术研究所硕士研究生,在黄茜副教授的指导下进行研究。目前主要研究领域为钙钛矿及叠层太阳电池透明电极;黄茜,南开大学光电子薄膜器件与技术研究所副教授、硕士生导师。2004年本科毕业于南开大学微电子系,2009年博士毕业于南开大学微电子学与固体电子学专业,并留校工作至今。研究方向为薄膜光伏材料与器件,主要从事先进光管理结构设计与实现、透明导电氧化物材料体系优化设计与实现等领域的研究工作。主持科技部973重大科学问题导向项目子课题1项,国家自然科学基金1项,天津市应用基础与前沿技术研究计划1项,横向课题2项。
引用本文:    
安世崇,黄茜,陈沛润,张力,赵颖,张晓丹. 半透明钙钛矿及叠层太阳电池中的透明电极研究综述[J]. 材料导报, 2020, 34(3): 3069-3079.
AN Shichong,HUANG Qian,CHEN Peirun,ZHANG Li,ZHAO Ying,ZHANG Xiaodan. Research Progress of Transparent Electrodes in Semi-transparent Perovskite and Tandem Solar Cells. Materials Reports, 2020, 34(3): 3069-3079.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010225  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3069
1 Snaith H J. The Journal of Physical Chemistry Letters, 2013, 4(21),3623.
2 Hobaillie A, Snaith H J, Green M A. Nature Photonics, 2014, 8(7), 506.
3 Stranks S D, Snaith H J. Nature Nanotechnology, 2015, 10(5), 391.
4 Zhang T, Dar M I, Li G, et al.Science Advances, 2017, 3(9), e1700841.
5 Li G, Zhang T, Guo N, et al. Angewandte Chemie International Edition, 2016, 55(43), 13460.
6 Yang W S, Noh J H, Jeon N J, et al. Science, 2015, 348(6240), 1234.
7 Ponseca Jr C S, Savenije T J, Abdellah M, et al. Journal of the American Chemical Society, 2014, 136(14), 5189.
8 Stranks S D, Eperon G E, Grancini G, et al. Science, 2013, 342(6156), 341.
9 Brenes R, Guo D, Osherov A, et al. Joule, 2017, 1(1), 155.
10 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050.
11 Kwon H C, Moon J. Current Opinion in Electrochemistry, 2018.
12 Cannavale A, Eperon G E, Cossari P, et al. Energy & Environmental Science, 2015, 8(5), 1578.
13 Kim B J, Kim D H, Lee Y Y, et al. Energy & Environmental Science, 2015, 8(3), 916.
14 Yang Y, Chen Q, Hsieh Y T, et al. ACS Nano, 2015, 9(7), 7714.
15 Bush K A, Frohna K, Prasanna R, et al. ACS Energy Letters, 2018, 3(2), 428.
16 Eperon G E, Stranks S D, Menelaou C, et al. Energy & Environmental Science, 2014, 7(3), 982.
17 Eperon G E, Leijtens T, Bush K A, et al. Science, 2016, 354(6314), 861.
18 Liang P W, Chueh C C, Xin X K, et al. Advanced Energy Materials, 2015, 5(1), 1400960.
19 Bush K A, Manzoor S, Frohna K, et al. ACS Energy Letters, 2018, 3(9), 2173.
20 Chen B, Yu Z, Liu K, et al. Joule, 2018.
21 Jošt M, Köhnen E, Morales-Vilches A B, et al. Energy & Environmental Science, 2018,11(12),3511.
22 Sahli F, Werner J, Kamino B A, et al. Nature Materials, 2018,17,820.
23 Bailie C D, Christoforo M G, Mailoa J P, et al. Energy & Environmental Science, 2015, 8(3), 956.
24 Guchhait A, Dewi H A, Leow S W, et al. ACS Energy Letters, 2017, 2(4), 807.
25 Fu F, Feurer T, Jäger T, et al. Nature Communications, 2015, 6, 8932.
26 Wahl T, Hanisch J, Meier S, et al. Organic Electronics, 2018, 54, 48.
27 Han K, Xie M, Zhang L, et al. Solar Energy Materials and Solar Cells, 2018, 185, 399.
28 Guo F, Azimi H, Hou Y, et al. Nanoscale,2015, 7(5), 1642.
29 Mailoa J P, Bailie C D, Johlin E C, et al. Applied Physics Letters, 2015, 106(12), 121105.
30 Li Z, Kulkarni S A, Boix P P, et al. ACS Nano, 2014, 8(7), 6797.
31 Chen B, Bai Y, Yu Z, et al. Advanced Energy Materials, 2016, 6(19), 1601128.
32 Zhao J, Brinkmann K O, Hu T, et al. Advanced Energy Materials, 2017, 7(14), 1602599.
33 Bag S, Durstock M F. Nano Energy, 2016, 30, 542.
34 Eperon G E, Burlakov V M, Goriely A, et al. ACS Nano, 2013, 8(1), 591.
35 Roldan-Carmona C, Malinkiewicz O, Betancur R, et al. Energy & Environmental Science, 2014, 7(9), 2968.
36 You P, Liu Z, Tai Q, et al. Advanced Materials, 2015, 27(24), 3632.
37 Lang F, Gluba M A, Albrecht S, et al. The Journal of Physical Chemistry Letters, 2015, 6(14), 2745.
38 Shin D H, Jang C W, Lee H S, et al. ACS Applied Materials & Interfaces, 2018, 10(4), 3596.
39 Bu L, Liu Z, Zhang M, et al. ACS Applied Materials & Interfaces, 2015, 7(32), 17776.
40 Jiang F, Liu T, Zeng S, et al. Optics Express, 2015, 23(3), A83.
41 Zhang D, Verhees W, Dörenkämper M, et al. Energy Procedia, 2016, 92, 669.
42 Hossain M I, Qarony W, Jovanov V, et al. Journal of Materials Chemistry A, 2018, 6(8), 3625.
43 Bett A J, Schulze P S C, Winkler K, et al. Energy Procedia, 2017, 124, 567.
44 Albrecht S, Saliba M, Baena J P C, et al. Energy & Environmental Science, 2016, 9(1), 81.
45 Heo J H, Han H J, Lee M, et al. Energy & Environmental Science, 2015, 8(10), 2922.
46 Qiu Z, Xu Z, Li N, et al. Nano Energy, 2018, 53, 798.
47 Werner J, Dubuis G, Walter A, et al. Solar Energy Materials and Solar Cells, 2015, 141, 407.
48 Fu F, Feurer T, Weiss T P, et al. Nature Energy, 2017, 2(1), 16190.
49 Kranz L, Abate A, Feurer T, et al. The Journal of Physical Chemistry Letters, 2015, 6(14), 2676.
50 Eom H, Lee J, Pichitpajongkit A, et al. Small, 2014, 10(20), 4171.
51 Elechiguerra J L, Larios-Lopez L, Liu C, et al. Chemistry of Materials, 2005, 17(24), 6042.
52 Nam S, Song M, Kim D H, et al. Scientific Reports, 2014, 4, 4788.
53 Chang C Y, Lee K T, Huang W K, et al. Chemistry of Materials, 2015, 27(14), 5122.
54 Dai X, Zhang Y, Shen H, et al. ACS Applied Materials & Interfaces, 2016, 8(7), 4523.
55 Li Z, Boix P P, Xing G, et al. Nanoscale, 2016, 8(12), 6352.
56 Li F R, Xu Y, Chen W, et al. Journal of Materials Chemistry A, 2017, 5(21), 10374.
57 Meng L, You J, Guo T F, et al. Accounts of Chemical Research, 2015, 49(1), 155.
58 Sun K, Li P, Xia Y, et al. ACS Applied Materials & Interfaces, 2015, 7(28), 15314.
59 Xia Y, Sun K, Chang J, et al. Journal of Materials Chemistry A, 2015, 3(31), 15897.
60 Zhang S, Yu Z, Li P, et al. Organic Electronics, 2016, 32, 149.
61 Aharon S, Layani M, Cohen B E, et al. Advanced Materials Interfaces, 2015, 2(12), 1500118.
62 Jung J W, Chueh C C, Jen A K Y. Advanced Energy Materials, 2015, 5(17), 1500486.
63 Chang C Y, Chang Y C, Huang W K, et al. Chemistry of Materials, 2015, 27(20), 7119.
64 Della Gaspera E, Peng Y, Hou Q, et al. Nano Energy, 2015, 13, 249.
65 Ou X L, Xu M, Feng J, et al. Solar Energy Materials and Solar Cells, 2016, 157, 660.
66 Bush K A, Bailie C D, Chen Y, et al. Advanced Materials, 2016, 28(20), 3937.
67 Werner J, Weng C H, Walter A, et al. The Journal of Physical Chemistry Letters, 2015, 7(1), 161.
68 Werner J, Barraud L, Walter A, et al. ACS Energy Letters, 2016, 1(2), 474.
69 Josˇt M, Albrecht S, Kegelmann L, et al. ACS Photonics, 2017, 4(5), 1232.
70 Zhu R, Chung C H, Cha K C, et al. ACS Nano, 2011, 5(12), 9877.
71 Leijtens T, Eperon G E, Pathak S, et al. Nature Communications, 2013, 4, 2885.
72 Tai Q, Yan F. Advanced Materials, 2017, 29(34), 1700192.
73 Kobayashi E, Watabe Y, Yamamoto T. Applied Physics Express, 2014, 8(1), 015505.
74 Kobayashi E, Watabe Y, Yamamoto T, et al. Solar Energy Materials and Solar Cells, 2016, 149, 75.
75 Scherg-Kurmes H, Seeger S, Körner S, et al. Thin Solid Films, 2016, 599, 78.
76 Macco B, Knoops H C M, Kessels W M M. ACS Applied Materials & Interfaces, 2015, 7(30), 16723.
77 Li S, Shi Z, Tang Z, et al. Journal of Alloys and Compounds, 2017, 705, 198.
78 Boccard M, Rodkey N, Holman Z C. Energy Procedia, 2016, 92, 297.
79 Koida T, Kondo M, Tsutsumi K, et al. Journal of Applied Physics, 2010, 107(3), 033514.
80 Lee K T, Guo L J, Park H J. Molecules, 2016, 21(4), 475.
81 Zhu S, Yao X, Ren Q, et al. Nano Energy, 2018, 45, 280.
82 Zhao D, Yu Y, Wang C, et al. Nature Energy, 2017, 2(4), 17018.
83 Keller J, Aijaz A, Gustavsson F, et al. Solar Energy Materials and Solar Cells, 2016, 157, 757.
84 Kim H J, Seo K W, Noh Y J, et al. Solar Energy Materials and Solar Cells, 2015, 141, 194.
[1] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[2] 唐燕, 阮海波, 蒲勇, 张进. 铜纳米线复合透明电极的构筑及应用研究进展[J]. 材料导报, 2018, 32(19): 3423-3434.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed