Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3423-3434    https://doi.org/10.11896/j.issn.1005-023X.2018.19.017
  金属与金属基复合材料 |
铜纳米线复合透明电极的构筑及应用研究进展
唐燕1,2,阮海波2,3,蒲勇2,张进2
1 重庆理工大学材料科学与工程学院,重庆 400054;
2 重庆文理学院新材料技术研究院,重庆 402160;
3 电子科技大学材料与能源学院,成都 610054
Progress on Construction and Application of Composite Copper Nanowires Transparent Electrodes
TANG Yan1,2, RUAN Haibo2,3, PU Yong2, ZHANG Jin2
1 College of Materials Science & Engineering, Chongqing University of Technology, Chongqing 400054;
2 Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160;
3 College of Materials and Energy, University of Electronic Science and Technology, Chengdu 610054
下载:  全 文 ( PDF ) ( 3710KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铜纳米线(Cu NWs)作为透明导电层,具有良好的光透过性、导电性、柔性以及低成本等特点,受到了研究者及工业界的广泛关注。然而,Cu NWs极易被氧化,严重限制了其在光电器件中的应用。针对这一难题,研究者普遍采用构筑Cu NWs复合透明电极的方式提高其稳定性。本文综述了近年来国内外在构筑Cu NWs复合透明电极方面的研究进展,重点介绍了不同构筑方式对Cu NWs透明电极结构、光电性能和稳定性的影响,简述了Cu NWs复合透明电极的应用研究进展。最后,对Cu NWs复合透明电极的应用前景和发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐燕
阮海波
蒲勇
张进
关键词:  铜纳米线  抗氧化  柔性  复合透明电极  研究进展    
Abstract: As a transparent conductive layer, copper nanowires (Cu NWs) have aroused great interests of researchers and industries for its high optical transmittance, super electrical conductivity, favorable flexibility and low cost. Nevertheless, Cu NWs can be easily oxidized, which severely blocked theirs practical application in optoelectronic devices. Aiming at enhancing the stability and reducing oxidation of Cu NWs, composite Cu NWs are usually constructed by researchers. In this article, the research progress of constructing composite Cu NWs transparent electrodes at home and abroad in recent years is reviewed. The influences of different composite construction methods on structure, optoelectronic properties and stability of Cu NWs based transparent electrodes are introduced with emphasis. Besides, the advances in application of composite Cu NWs transparent electrodes are also presented. Finally, the future development direction and prospective of composite Cu NWs transparent electrodes are proposed.
Key words:  copper nanowires    oxidation resistance    flexibility    composite transparent electrodes    research progress
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  O484  
  TB31  
基金资助: 国家国际科技合作项目(2014DFR50830);中国博士后基金面上项目(2016M600726);重庆市基础与前沿研究计划项目(cstc2017jcyjAX0393);重庆文理学院引进人才项目(R2013CJ07)
作者简介:  唐燕:女,1993年生,硕士研究生,主要从事柔性透明导电材料的研究 E-mail:tytang2016@163.com; 阮海波:通信作者,男,1984年生,副教授,主要从事光电功能材料的研究 E-mail:rhbcqu@aliyun.com
引用本文:    
唐燕, 阮海波, 蒲勇, 张进. 铜纳米线复合透明电极的构筑及应用研究进展[J]. 材料导报, 2018, 32(19): 3423-3434.
TANG Yan, RUAN Haibo, PU Yong, ZHANG Jin. Progress on Construction and Application of Composite Copper Nanowires Transparent Electrodes. Materials Reports, 2018, 32(19): 3423-3434.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.017  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3423
1 Moon G D, Lim G H, Song J H, et al. Highly stretchable patterned gold electrodes made of Au nanosheets[J].Advanced Materials,2013,25(19):2707.
2 Sekitani T, Nakajima H, Maeda H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors[J].Nature Materials,2009,8(6):494.
3 Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics[J].Materials for Electronics,2010,327:1603.
4 Lai Y C, Huang Y C, Lin T Y, et al. Stretchable organic memory: Toward learnable and digitized stretchable electronic applications[J].NPG Asia Materials,2014,6(2):e87.
5 Lipomi D J, Bao Z. Stretchable, elastic materials and devices for solar energy conversion[J].Energy & Environmental Science,2011,4(9):3314.
6 Rathmell A R, Bergin S M, Hua Y L, et al. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films[J].Advanced Materials,2010,22(32):3558.
7 Ober J A, Strontium U. Geological survey mineral commodity summaries[R].US: US Geological Survey,2013:156.
8 Kim Y H, Sachse C, Machala M L, et al. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells[J].Advanced Functional Materials,2011,21(6):1076.
9 Vosgueritchian M, Lipomi D J, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes[J].Advanced Functional Materials,2012,22(2):421.
10 Pasquier AD, Unalan HE, Kanwal A, et al. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells[J].Applied Physics Letters,2005,87(20):203511.
11 Rowell M W, Topinka M A, McGehee M D, et al. Organic solar cells with carbon nanotube network electrodes[J].Applied Physics Letters,2006,88(23):233506.
12 Wu Z, Chen Z, Du X, et al. Transparent, conductive carbon nanotube films[J].Science,2004,305(27):1273.
13 Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J].Nature Nanotechnology,2010,5(8):574.
14 Li X, Zhu Y, Cai W, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes[J].Nano Letters,2009,9(12):4359.
15 Hatton R A, Willis M R, Chesters M A, et al. A robust ultrathin, transparent gold electrode tailored for hole injection into organic light-emitting diodes[J].Journal of Materials Chemistry,2003,13(4):722.
16 Ghosh D S, Martinez L, Vergani P, et al. Widely transparent electrodes based on ultrathin metals[J].Optics Letters,2009,34(3):325.
17 Zhong Z, Lee H, Kang D, et al. Continuous patterning of copper nanowire-based transparent conducting electrodes for use in flexible electronic applications[J].ACS Nano,2016,10(8):7847.
18 Hwang C, An J, Choi B D, et al. Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode[J].Journal of Materials Chemistry C,2016,4(7):1441.
19 De S, Higgins T M, Lyons P E, et al. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios[J].ACS Nano,2009,3(7):1767.
20 Yang Y, Wang J L, Lin L, et al. A room-temperature environmentally friendly solution process to assemble silver nanowire architectures for flexible transparent electrodes[J].Nanoscale,2017,9:52.
21 Kirchmeyer S, Reuter K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene)[J].Journal of Materials Chemistry,2005,15(21):2077.
22 Dai H. Carbon nanotubes: Opportunities and challenges[J].Surface Science,2002,500(1-3):218.
23 Eigler S. A new parameter based on graphene for characterizing transparent, conductive materials[J].Carbon,2009,47(12):2936.
24 Hecht D S, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures[J].Advanced Materials,2011,23(13):1482.
25 Kou P, Yang L, Chi K, et al. Large-area and uniform silver nanowires based transparent on rigid and flexible substrates fabricated by polymethylmethacrylate-assisted spin-coating[J].Progress In Electromagnetic Research Symposium,2016,8(11):1592.
26 Lonne Q, Endrino J, Huang Z. UV treatment of flexible copper nanowire mesh films for transparent conductor applications[J].Nanoscale Research Letters,2017,12(1):577.
27 Stewart I E, et al. Solution-processed copper-nickel nanowire anodes for organic solar cells[J].Nanoscale,2014,6(11):5980.
28 Wang R, Ruan H. Synthesis of copper nanowires and its application to flexible transparent electrode[J].Journal of Alloys and Compounds,2016,656:936.
29 Dou L, Cui F, Yu Y, et al. Solution-processed copper/reduced-graphene-oxide core/shell nanowire transparent conductors[J].ACS Nano,2016,10(2):2600.
30 Yang X, Hu X, Wang Q, et al. Large-scale stretchable semiembedded copper nanowire transparent conductive films by an electrospinning template[J].ACS Applied Materials & Interfaces,2017,9(31):26468.
31 Ahn Y, Jeong Y, Lee D, et al. Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes[J].ACS Nano,2015,9(3):3125.
32 Manikandan A, Lee L, Wang Y C, et al. Graphene-coated copper nanowire networks as a highly stable transparent electrode in harsh environments toward efficient electrocatalytic hydrogen evolution reactions[J].Journal of Materials Chemistry A,2017,5(26):13320.
33 Kholmanov I N, Domingues S H, Chou H, et al. Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes[J].ACS Nano,2013,7(2):1811.
34 Rathmell A R, Nguyen M, Chi M, et al. Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks[J].Nano Letters,2012,12(6):3193.
35 Song J, Li J, Xu J, et al. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics[J].Nano Letters,2014,14(11):6298.
36 Stewart I E, Ye S, Chen Z, et al. Synthesis of Cu-Ag, Cu-Au, and Cu-Pt core-shell nanowires and their use in transparent conducting films[J].Chemistry of Materials,2015,27(22):7788.
37 Kim J, Lim J W, et al. Reduced graphene oxide wrapped core-shell metal nanowires as promising flexible transparent conductive electrodes with enhanced stability[J].Nanoscale,2016,8(45):18938.
38 Chen Z, Ye S, Stewart I E, et al. Copper nanowire networks with transparent oxide shells that prevent oxidation without reducing transmittance[J].ACS Nano,2014,8(9):9673.
39 Wang H, Wu C, Huang Y, et al. One-pot synthesis of superfine core-shell Cu@metal nanowires for highly tenacious transparent led dimmer[J].ACS Applied Materials & Interfaces,2016,8(42):28709.
40 Hsu P C, Hui W, Carney T J, et al. Passivation coating on electrospun copper nanofibers for stable transparent electrodes[J].ACS Nano,2012,6(6):5150.
41 Won Y, Kim A, Lee D, et al. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics[J].NPG Asia Materials,2014,6(6):e105.
42 Zhu Z, Mankowski T, Balakrishnan K, et al. Hybrid transparent conductive electrodes with copper nanowires embedded in a zinc oxide matrix and protected by reduced graphene oxide platelets[J].Journal of Applied Physics,2016,119(8):085303.
43 Celle C, Cabos A, Fontecave T, et al. Oxidation of copper nanowire based transparent electrodes in ambient conditions and their stabilization by encapsulation: Application to transparent film heaters[J].Nanotechnology,2018,29(8):085701.
44 Wang Y, Liu P, Zeng B, et al. Facile synthesis of ultralong and thin copper nanowires and its application to high-performance flexible transparent conductive electrodes[J].Nanoscale Research Letters,2018,13(1):78.
45 Liu K, Li Y, Zhang H, et al. Synthesis of the polypyrrole encapsulated copper nanowires with excellent oxidation resistance and temporal stability[J].Applied Surface Science,2018,439:226.
46 Han S, et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics[J].Advanced Materials,2014,26(33):5808.
47 Lee J W, Seol D J, Cho A N, et al. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PBI3[J].Advanced Materials,2014,26(29):4991.
48 Zhou W, et al. Copper mesh templated by breath-figure polymer films as flexible transparent electrodes for organic photovoltaic devices[J].ACS Applied Materials & Interfaces,2016,8(17):11122.
49 Wang X, Wang R, Zhai H, et al. Room-temperature surface modification of Cu nanowires and their applications in transparent electrodes, sers-based sensors and organic solar cells[J].ACS Applied Materials & Interfaces,2016,8(42):28831.
50 Zhu Y, Hu Y, Zhu P, et al. Enhanced oxidation resistance and electrical conductivity copper nanowires-graphene hybrid films for flexible strain sensors[J].New Journal Chemistry,2017,41(12):4950.
51 Zhang W, Yin Z, Chun A, et al. Bridging oriented copper nanowire-graphene composites for solution-processable, annealing-free, and air-stable flexible electrodes[J].ACS Applied Materials & Interfaces,2016,8(3):1733.
52 Guo H, Chen Y, Ping H, et al. Facile synthesis of Cu and Cu@Cu-Ni nanocubes and nanowires in hydrophobic solution in the presence of nickel and chloride ions[J].Nanoscale,2013,5(6):2394.
53 Kim H J, Song M, Jeong J H, et al. Highly efficient and stable cupronickel nanomesh electrode for flexible organic photovoltaic devices[J].Journal of Power Sources,2016,331:22.
[1] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[2] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[3] 樊凯,卢雪峰,吕凯明,钱坤. C/C复合材料孔隙结构的研究进展[J]. 材料导报, 2019, 33(13): 2184-2190.
[4] 许君君, 黄金华, 盛伟, 王肇肇, 赵文凯, 李佳, 杨晔, 万冬云, 宋伟杰. 超薄金属透明导电膜及其应用研究进展[J]. 材料导报, 2019, 33(11): 1875-1881.
[5] 周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 749-754.
[6] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[7] 于嘉伦, 徐丹, 任丹, 谢东梅, 高燕利. 橘皮还原法和硼氢化钠还原法制备的纳米银的结构和性能比较[J]. 材料导报, 2018, 32(20): 3489-3495.
[8] 义志涛, 何国强. 柔性热电发电器的关键工艺及其展望[J]. 材料导报, 2018, 32(19): 3332-3337.
[9] 宁洪龙, 陶瑞强, 姚日晖, 陈建秋, 杨财桂, 周艺聪, 蔡炜, 朱镇南, 彭俊彪, 宋永生. 绿色柔性喷墨打印银纳米墨水研究综述[J]. 材料导报, 2018, 32(17): 2959-2968.
[10] 董文举, 孔令斌, 康龙, 冉奋. 超级电容器电极材料及器件的柔性化与微型化[J]. 材料导报, 2018, 32(17): 2912-2919.
[11] 张昊,黄永德,郭跃,陆青松. 适用于机器人焊接的搅拌摩擦焊技术及工艺研究现状[J]. 《材料导报》期刊社, 2018, 32(1): 128-134.
[12] 刘萍, 曾葆青, 王亚雄, 汪江浩. 纳米线透明导电薄膜的制备及在光电器件中的应用*[J]. 《材料导报》期刊社, 2017, 31(7): 6-18.
[13] 张云升, 张文华, 陈振宇. 综论超高性能混凝土:设计制备·微观结构·力学与耐久性·工程应用*[J]. CLDB, 2017, 31(23): 1-16.
[14] 卢国锋. Si-O-C界面对C/Si-C-N复合材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 121-124.
[15] 蔡满园, 孙晓刚, 聂艳艳, 刘珍红, 邱治文, 陈珑. 基于纸纤维/晶须状碳纳米管/活性炭三元无金属集流体复合纸电极的柔性超级电容器*[J]. 《材料导报》期刊社, 2017, 31(16): 6-11.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed