Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10003-10007    https://doi.org/10.11896/cldb.19030230
  无机非金属及其复合材料 |
超亲水和具有不同黏性的超疏水阳极氧化铝膜的制备
商富强1,2, 黄丽清1, 李刚1, 张宇1, 蔡亚坤1, 王慧敏1, 董伟丽1, 张磊1, 刘悠1
1 西安交通大学理学院,物质非平衡合成与调控教育部重点实验室,西安 710049
2 中国人民解放军63658部队,乌鲁木齐 841700
Preparation of Superhydrophilic Anodized Aluminum Oxide Membrane and Superhydrophobic Anodized Aluminum Oxide Membrane with Different Adhesion
SHANG Fuqiang1,2, HUANG Liqing1, LI Gang1, ZHANG Yu1, CAI Yakun1, WANG Huimin1, DONG Weili1, ZHANG Lei1, LIU You1
1 Non-equilibrium Condensed Matter and Quantum Engineering Laboratory, the Key Laboratory of Ministry of Education, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
2 Unit 63658 of PLA, Urumqi 841700, China
下载:  全 文 ( PDF ) ( 4275KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 超亲水和超疏水表面在许多领域具有重要的应用价值。本工作对二步高场阳极氧化所制备的阳极氧化铝(AAO)膜进行了湿化学刻蚀及高温退火处理,研究了其表面浸润特性随后处理条件变化的特征。结果表明,AAO膜表面的水接触角(WCA)随着刻蚀时间的延长呈现先增大后减小最终趋于极小定值的变化规律;当刻蚀时间大于90 min时,AAO膜表面呈现出超亲水的特征(WCA<10°);刻蚀不同时间的AAO膜经过高温退火后其WCA均大于未经过高温退火的AAO膜,且WCA随着刻蚀时间的延长而增大,特别是刻蚀时间为120~180 min时,AAO膜为超疏水高黏性的,而刻蚀时间为200 min的AAO膜则为超疏水(WCA>150°)极低黏性的,其表面与水滴的平均接触时间只有4.6 ms;所制备的超疏水AAO膜具有很好的时间稳定性。本工作还对经后处理的AAO膜的浸润特性随后处理条件变化的机理进行了定性分析。这些研究结果为设计具有不同浸润特性的功能化固体表面提供了新的思路,具有很好的实际应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
商富强
黄丽清
李刚
张宇
蔡亚坤
王慧敏
董伟丽
张磊
刘悠
关键词:  表面浸润特性  阳极氧化铝膜  化学刻蚀  高温退火  超疏水    
Abstract: Both superhydrophilic and superhydrophobic surfaces have great application value in many fields. In this article, anodized aluminum oxide (AAO) membranes prepared by two-step high-field anodizing were subjected to wet chemical etching and high-temperature annealing. The change of surface wettability characteristics with post-treatment conditions was studied. The results showed that, with the increase of etching duration, the water contact angle (WCA) of AAO membranes increased first and then decreased to a minimum fixed value. As the etching duration was more than 90 min, the etched AAO membranes showed superhydrophilic characteristic (WCA<10°). The WCA of AAO membranes etched at different time with high temperature annealing was larger than that without high temperature annealing, and the WCA increased with the increase of etching time. Especially when the etching time was 120—180 min, the AAO membranes were superhydrophobic and highly viscous. while the AAO membranes with etching time of 200 min showed extremely low superhydrophobic characteristic (WCA>150°) and ultralow viscosity, and the average contact duration between the AAO membranes surface and droplet was only 4.6 ms. The as-prepared superhydrophobic AAO membranes were of good time stability. Also the mechanism of the wettability of AAO membrane changing with post-treatment conditions was analyzed. The results obtained in this article provide a new idea for design functional solid surfaces with different wettability and have good practical application value.
Key words:  surface wettability    AAO membrane    chemical etching    high temperature annealing    superhydrophobic
               出版日期:  2020-05-25      发布日期:  2020-04-26
ZTFLH:  TB304  
基金资助: 国家自然科学基金重大项目(61890961);陕西省科学技术研究发展计划 (2020GY-274);国家自然科学基金面上项目(11774279)
通讯作者:  黄丽清,西安交通大学,教授,博士研究生导师。主要研究方向为光学功能材料、纳米多孔薄膜的制备及应用、纳米金属材料及组装体系光学性能。lqhuang@mail.xjtu.edu.cn   
作者简介:  商富强,西安交通大学硕士研究生,主要从事基于阳极氧化技术的微纳结构浸润特性研究和超疏水材料的制备。
引用本文:    
商富强, 黄丽清, 李刚, 张宇, 蔡亚坤, 王慧敏, 董伟丽, 张磊, 刘悠. 超亲水和具有不同黏性的超疏水阳极氧化铝膜的制备[J]. 材料导报, 2020, 34(10): 10003-10007.
SHANG Fuqiang, HUANG Liqing, LI Gang, ZHANG Yu, CAI Yakun, WANG Huimin, DONG Weili, ZHANG Lei, LIU You. Preparation of Superhydrophilic Anodized Aluminum Oxide Membrane and Superhydrophobic Anodized Aluminum Oxide Membrane with Different Adhesion. Materials Reports, 2020, 34(10): 10003-10007.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030230  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10003
1 Xia F, Jiang L. Advanced Materials, 2008, 20(15), 2842.
2 Yan Y Y, Gao N, Barthlott W. Advances in Colloid and Interface Scie-nce, 2011, 169(2), 80.
3 Webb H K, Crawford R J, Ivanova E P. Advances in Colloid and Interface Science, 2014, 210, 58.
4 Gao X F, Jiang L. Nature, 2004, 432(7013), 36.
5 Sun T, Feng L, Gao X, et al. Accounts of Chemical Research, 2005, 38(8), 644.
6 Wen L, Tian Y, Jiang L. Angewandte Chemie. International Ed. in English, 2015, 54(11), 3387.
7 Jin J, Zhao X, Du Y H, et al. iScience, 2018, 6, 289.
8 Xiang C, Sun L, Wang Y, et al. The Journal of Physical Chemistry C, 2017, 121(28), 15448.
9 Xiang C, Sun L. The Journal of Physical Chemistry C, 2018, 122(51), 29210.
10 Xiang C, Zhao X, Tan L, et al. Nano Energy, 2019, 55, 269.
11 Losic D, Santos A. Nanoporous alumina: fabrication, structure, properties and applications, Springer, 2015.
12 Tsai K T, Liu C Y, Wang H H, et al. Nanotechnology,2014, 25(33), 335301.
13 Woo L, Sang-Joon P. Chemical Reviews, 2014, 114(15), 7487.
14 Zhang W, Huang L, Zi C, et al. Journal of Porous Materials, 2018, 25(6), 1707.
15 Ran C, Ding G, Liu W, et al. Langmuir, 2008, 24(18), 9952.
16 Kim S, Polycarpou A A, Liang H. Applied Surface Science, 2015, 351, 460.
17 Buijnsters J G, Zhong R, Tsyntsaru N, et al. ACS Applied Materials & Interfaces, 2013, 5(8), 3224.
18 Yao L, Zheng M, Ma L, et al. Materials Research Bulletin, 2011, 46(9), 1403.
19 Peng S, Tian D, Miao X, et al. Journal of Colloid and Interface Science, 2013, 409, 18.
20 Baxte A B D C. Transactions of the Faraday Society, 1944, 40, 546.
21 Wenzel R N. Industrial & Engineering Chemistry, 1936, 28(8), 988.
22 Le Coz F, Arurault L, Fontorbes S, et al. Surface and Interface Analysis, 2010, 42(4), 227.
23 Atkinson R. Atmospheric Environment, 2000, 34(12-14), 2063.
24 Atkinson R, Arey J. Chemical Reviews, 2003, 103(12), 4605.
25 Deng X, Mammen L, Butt H J, et al. Science, 2012, 335(6064), 67.
26 Ma M, Hill R M. Current Opinion in Colloid & Interface Science, 2006, 11(4), 193.
27 Perevalov T V, Tereshenko O E, Gritsenko V A, et al. Journal of Applied Physics, 2010, 108(1), 13501.
28 Das S N, Choi J H, Kar J P, et al. Applied Surface Science, 2009, 255(16), 7319.
29 Sun R, Nakajima A, Fujishima A, et al. The Journal of Physical Chemistry B, 2001, 105(10), 1984.
30 Yu X, Ma J, Ji F, et al. Thin Solid Films, 2005, 483(1-2), 296.
31 Yarin A L. Annual Review of Fluid Mechanics, 2006, 38(1), 159.
32 Graeber G, Martin Kieliger O B, Schutzius T M, et al. ACS Applied Materials & Interfaces, 2018, 10(49), 43275.
33 Liu Y, Moevius L, Xu X, et al. Nature Physics, 2014, 10(7), 515.
34 Lai Y, Gao X, Zhuang H, et al. Advanced Materials, 2009, 21(37), 3799.
[1] 赵毅, 秦旻, 文凯琪, 梁乃兴, 王亚茹. 沥青路面超疏水抗凝冰材料研究进展[J]. 材料导报, 2021, 35(1): 1141-1153.
[2] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[3] 杨雪, 苏静, 王鸿博. 基于HDTMS的一步法构筑棉织物超疏水表面[J]. 材料导报, 2020, 34(Z1): 542-547.
[4] 杨福生, 张妍, 刘小斌, 陈永哲, 杨武. 种子生长法构筑超疏水-超亲油滤纸及其在油水分离中的应用[J]. 材料导报, 2020, 34(4): 4132-4136.
[5] 曹颐戬,王聪,王丽琴. 仿生超疏水材料及其在文物保护中的应用综述[J]. 材料导报, 2020, 34(3): 3178-3184.
[6] 郑博源, 底月兰, 王海斗, 康嘉杰, 刘韬. 激光加工制备金属基体超疏水表面的研究进展[J]. 材料导报, 2020, 34(23): 23109-23120.
[7] 刘帅卓, 张颖, 范雷倚, 张骞, 周莹. 活性炭/聚四氟乙烯改性三聚氰胺海绵及其在油水分离中的应用[J]. 材料导报, 2020, 34(17): 17099-17104.
[8] 张静, 许海波, 黄悦, 周忠华. 双层透明耐磨超疏水膜层的制备及界面结构控制[J]. 材料导报, 2020, 34(12): 12005-12009.
[9] 闫秋会, 夏卫东, 罗杰任, 霍鑫. SiO2气凝胶的常压干燥制备与性能表征[J]. 材料导报, 2020, 34(12): 12173-12177.
[10] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[11] 王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
[12] 周莹, 肖利吉, 姚丽, 徐祖顺. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 1234-1242.
[13] 尹晓丽, 于思荣, 胡锦辉. Ni3S2微纳米结构超疏水表面的制备及耐蚀性能[J]. 材料导报, 2019, 33(20): 3372-3376.
[14] 王晶, 史雪婷, 冯利邦, 强小虎, 刘艳花. 长效超疏水铜表面的构建及耐磨性和自清洁性能[J]. 材料导报, 2018, 32(24): 4314-4318.
[15] 邹宇新, 邱佳佳, 席风硕, 杨玺, 李绍元, 马文会. 纳米金属银、铜辅助化学刻蚀制绒金刚线切割多晶硅的研究[J]. 材料导报, 2018, 32(21): 3706-3711.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed