Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1234-1242    https://doi.org/10.11896/cldb.18010216
  高分子与聚合物基复合材料 |
自修复型超疏水材料研究进展
周莹1, 肖利吉1, 姚丽1,2, 徐祖顺1,2
1 湖北大学有机化工新材料湖北省协同创新中心,武汉 430062
2 湖北大学功能材料绿色制备与应用教育部重点实验室, 武汉 430062
Research Progress in Self-healing Superhydrophobic Surfaces
ZHOU Ying1, XIAO Liji1, YAO Li1,2, XU Zushun1,2
1 Hubei Collaborative Innovation Center for Advanced Organic Chemical materials, Hubei University, Wuhan 430062
2 Key Laboratory for the Green Preparation and Application of Functional materials of ministry of Education, Hubei University, Wuhan 430062
下载:  全 文 ( PDF ) ( 19169KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超疏水材料是指水在其表面的接触角大于150°、滚动角小于10°的材料。超疏水材料之所以表现出超强的疏水性能,一方面是由于低表面自由能物质的存在,使得水滴难以在材料表面铺展;另一方面是由于丰富的微-纳多级结构使空气在固液两相之间形成“气垫层”,进一步减小固液接触面。上述两个要素共同作用,可赋予超疏水材料自清洁、表面防污、防腐蚀、防覆冰、减阻等功能。此外,还可以制备具有抗黏附、油水分离、集水功能的超疏水材料,这些吸引了人们的广泛关注。
然而,超疏水材料在实际应用中不可避免地受到诸如化学腐蚀、刮擦磨损等外界环境的影响,容易造成低表面能组分的缺失或微-纳多级结构的破坏,导致超疏水性能丧失。针对这一问题,科学家们提出构筑具备长效耐久性的超疏水材料,主要有两种方法:(1)设计具有高耐磨性的超疏水材料,尽可能减小摩擦磨损对表面组分或结构的破坏;(2)构筑具备自修复性能的超疏水材料,及时修复摩擦磨损对表面组分或结构造成的破坏,从而恢复材料的超疏水性能。由于方法一需要引入高耐磨物质,在材料的选择方面有一定的局限性,而方法二的普适性更强,因此成为了现阶段研究的热点。
目前,自修复型超疏水材料的构筑主要有两种途径。一种途径是构建自动补足低表面能组分的超疏水体系。对于单纯疏水组分的缺失,只需及时补充表面的低表面能组分,利用其自发向材料表面迁移重排的特性,即可实现超疏水性的修复,如在材料本体中接枝含氟链段,以材料的孔隙或微胶囊作为低表面能物质的贮存位点等。另一种途径是构筑能重建多级微-纳结构的超疏水体系。如果材料受到严重破坏,化学组分与表面粗糙结构同时受损,则可通过材料的结构设计同时实现缺失组分的补充和形貌结构的重建,例如,在材料中引入疏水化粒子、构建一体化涂层、设计表层剥离型材料、利用形状记忆高分子的“记忆效应”等方法。
本文归纳了自修复型超疏水材料近年来的研究成果,对各类自修复型超疏水体系的设计思路、超疏水效果以及修复机理等进行了介绍,阐述了该领域当前的挑战和未来的发展前景,以期为制备应用广泛的长效型超疏水材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周莹
肖利吉
姚丽
徐祖顺
关键词:  超疏水  自修复  多级微-纳结构  低表面能组分    
Abstract: Superhydrophobic materials are defined as a kind of materials with water static contact angle of 150° or higher and sliding angle of less than 10°. The super hydrophobic properties of the materials are derived from two aspects.
On the one hand, it is difficult for water droplets to spread on the surface of the materials because of the existence of low-surface-energy substances. On the other hand, the rich hierarchical micro/nanostructures enable the formation of an“air cushion” between the solid and liquid phases, which further reduces the solid-liquid interface. Accordingly, the superhydrophobic materials are endowed with special functions like self-cleaning, anti-fouling, corrosion resistant, anti-icing, drag-reduction, anti-adhesion, oil/water separation, water directional collection, etc. Additionally, materials with anti-adhesion, oil-water separation, water collection can be also achieved based on superhydrophobic materials.
Unfortunately, superhydrophobic materials are highly susceptible to environmental hazards such as chemical etching, scratch and abrasion, resulting in loss of low-surface-energy components or destruction of hierarchical structures, eventually leads to the decline or loss of super water-repellency. To solve these problems, durable superhydrophobic materials are proposed, which can be achieved mainly by two approaches, one is to design superhydrophobic materials with high abrasive resistance, in purpose of minimizing friction or wear damage to chemical components or micro-nanoscale topography. The other is to construct self-healing superhydrophobic materials, for the sake of repairing the damage caused by friction and wear on the surface component or structure in time, and restoring the superhydrophobic property of the material. The former shows certain limitation in selection of wearproof materials because of the demand for introducing high wear-resistant material. more attentions have been paid on the latter owing to its university.
Generally, there are two approaches for fabrication of self-healing superhydrophobic materials. Specifically speaking, the first approach is constructing the superhydrophobic system capable of automatically complement the lost chemical composition by low-surface-energy substance. Concerning the absence of simple hydrophobic components timely supplement of surface components with low surface energy can realize the restoration of super-hydrophobicity by taking advantage of self-migration and rearrangement of this material on surface. For example, graft fluorinated groups to the bulk materials, take the micropores or microcapsules of the material as storage sites for low-surface-energy substances, etc. Anot-her approach to repair severely crushed microstructures and damaged surface chemistry involves design of superhydrophobic system capable of reconstructing hierarchical micro/nanostructures, such as introducing hydrophobic particles, preparing all-in-one coatings, imitating snakeskin-like shedding, utilizing shape memory polymer, etc.
In this review,we summarize the recent progress of self-healing superhydrophobic materials, elaborate the design idea, effect of hydrophobicity and self-healing mechanism of typical self-healing superhydrophobic systems. We also point out the challenges and prospects in self-healing superhydrophobic field, in order to provide references for fabrication of long-term superhydrophobic materials for widespread applications.
Key words:  superhydrophobicity    self-healing    hierarchical micro/nanostructures    low-surface-energy components
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  O647.5  
基金资助: 国家自然科学基金(51503059)
通讯作者:  yaoli_2015@163.com   
作者简介:  周莹,2016年6月毕业于湖北大学,获得工学学士学位。现为湖北大学材料科学与工程学院研究生,目前主要研究领域为自修复超疏水材料。姚丽,湖北大学材料科学与工程学院讲师,硕士研究生导师。2007年7月硕士毕业于湖北大学化学与材料科学学院,2011年7月在中山大学化学与化学工程学院获得博士学位。2012年7月入职湖北大学材料科学与工程学院,主要从事自修复材料、超疏涂层方面的研究工作。现主持国家自然科学基金项目1项,参与国家自然科学基金项目3项,已发表论文10余篇,包括Journal of materials ChemistryPolymer、《高分子学报》等,并申请专利1项。徐祖顺,教授,博士研究生导师,湖北大学“秦园学者”特聘教授,湖北省政府专项津贴专家。主要从事乳液聚合及聚合物乳液、功能性高分子微球、耐高温高分子材料、生物医用材料、环境友好型涂料及胶黏剂等领域的研究。近年来,承担国家、省部级科研项目多项,在Biomateirals、macromolecules等国内外刊物上发表论文200多篇,出版学术专著2部,申请发明专利多项。研制开发的多种产品已转让企业生产,产生了良好的经济效益和社会效益。
引用本文:    
周莹, 肖利吉, 姚丽, 徐祖顺. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 1234-1242.
ZHOU Ying, XIAO Liji, YAO Li, XU Zushun. Research Progress in Self-healing Superhydrophobic Surfaces. Materials Reports, 2019, 33(7): 1234-1242.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010216  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1234
1 Zheng Y m, Han D, Zhai J, et al. Applied Physics Letters, 2008, 92, 084106.
2 Ferrari m, Benedetti A.Advances in Colloid and Interface Science, 2015, 222, 291.
3 Lee J H, Zhang Z, Baek S, et al. Scientific Reports, 2016, 6, 24653.
4 Wang N, Xiong D S, Deng Y L, et al.ACS Applied materials & Interfaces, 2015, 7(11), 6260.
5 Wang L, Gong Q H, Zhan S H, et al.Advanced materials, 2016, 28, 7729.
6 Zhang X Y, Li Z, Liu K S, et al.Advanced Functional materials, 2013, 23, 2881.
7 Sun Z Q, Liao T, Liu K S, et al.Small, 2014, 10(15), 3001.
8 Parker A R, Lawrence C R.Nature, 2001, 414(6859), 33.
9 Chen K L, Wu L, Zhou S X, et al.macromolecular Rapid Communications, 2016, 37, 463.
10 Gao L, mcCarthy T J. Langmuir, 2006, 22(7), 2966.
11 Li D, Guo Z. Journal of Colloid and Interface Science, 2017, 503, 124.
12 Wu J X, Li J Y, Deng B, et al.Scientific Reports, 2013, 3(3), 2951.
13 Wang Z H, Zuilhof H. Langmuir, 2016, 32(25), 6310.
14 Chen S S, Li X, Li Y, et al. ACS Nano, 2015, 9(4), 4070.
15 Liu m m, Hou Y Y, Li J, et al.Journal of materials Chemistry A , 2017, 5, 19297.
16 Wang H Y, Liu Z J, Zhang X G, et al.Advanced materials Interfaces, 2016, 3(15), 1600040.
17 Wu m C, ma B H, Pan T Z, et al.Advanced Functional materials, 2016, 26(4), 569.
18 Zhou H, Wang H X, Niu H T, et al. Advanced Functional materials, 2017, 27, 1604261.
19 Wong T S, Kang S H, Tang S K Y, et al. Nature, 2011, 477, 443.
20 Liu Q Z, Wang X L, Bo Y, et al.Langmuir, 2012, 28(13), 5845.
21 Li Y, Li L, Sun J Q.Angewandte Chemie, 2010, 122, 6265.
22 Li Y, Chen S S, Wu m C, et al. Advanced materials, 2014, 26, 3344.
23 Lin Y B, Shen Y Z, Liu A H, et al. materials Design, 2016, 103, 300.
24 Liu Y H, Liu Y P, Hu H Y, et al. The Journal of Physical Chemistry C, 2015, 119(13), 7109.
25 Wang Q, Li J L, Zhang C L, et al. Journal of materials Chemistry, 2010, 20, 3211.
26 Chen K L, Gu K, Qiang S Y, et al.RSC Advances, 2017, 7, 543.
27 Cong Y, Chen K L, Zhou S X, et al.Journal of materials Chemistry A, 2015, 3(37), 19093.
28 Deng X, mammen L, Zhao Y F, et al.Advanced materials, 2011, 23(26), 2962.
29 Chen K L, Zhou S X, Yang S, et al. Advanced Functional materials, 2015, 25, 1035.
30 Kamegawa T, Shimizu Y, Yamashita H.Advanced materials, 2012, 24, 3697.
31 Xu Q F, Liu Y, Lin F J, et al.ACS Applied materials Interfaces, 2013, 5, 8915.
32 Rao Q Q, Chen K L, Wang C X. RSC Advances, 2016, 6, 53949.
33 Huang m m, Zhang H, Yang J L.Corrosion Science, 2012, 65, 561.
34 Wu G, An J, Tang X Z, et al.Advanced Functional materials, 2014, 24, 6751.
35 Xu Q, Zhang W W, Dong C B, et al. Journal of the Royal Society Interface, 2016, 13, 20160300.
36 Ramakrishna S, Kumar S S S, mathew D, et al.Scientific Reports, 2015, 5, 18510.
37 Xue C H, Bai X, Jia S T.Scientific Reports, 2016, 6, 27262.
38 manna U, Lynn D m.Advanced materials, 2013, 25, 5104.
39 Choi H J, Choo S, Shin J H, et al. The Journal of Physical Chemistry C, 2016, 117(46), 24354.
40 Zhang W W, Wang S L, Yu X Q, et al. Applied Physics Letters, 2016, 109(4), 667.
41 Sahoo B N, Nanda S, Kozinski J A, et al.RSC Advances, 2017, 7, 15027.
42 Zulfiqar U, Awais m, Hussain S Z, et al.materials Letters, 2017, 192, 56.
43 Li Y, Ge Bo, men X H, et al. Composite Science and Technology, 2016, 125, 55.
44 Puretskiy N, Stoychev G, Synytska G, et al.Langmuir, 2012, 28, 3679.
45 Xu D, mammen L, Butt H J, et al.Science, 2012, 335(6064), 67.
46 Si Y F, Yang F C, Guo Z G.Journal of Colloid and Interface Science, 2017, 498, 182.
47 Esteves A C C, Luo Y, van de Put m W P, et al. Advanced Functional materials, 2014, 24, 986.
48 Hönes R, Kondrashov V, Rühe J.Langmuir, 2017, 33 (19), 4833.
49 Chen K L, Zhou S X, Wu L m.Chemical Communication, 2014, 50, 11891.
50 Lv L, Cheng Z J, Zhang E S, et al. Small, 2017, 13, 1503402.
51 Qian H C, Xu D, Du C W.Journal of materials Chemistry A, 2017, 5, 2355.
52 Wu m C, Li Y, An N. Advanced Functional materials, 2016, 26, 6777.
[1] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[2] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[3] 钱春香, 冯建航, 苏依林. 微生物诱导碳酸钙提高水泥基材料的早期力学性能及自修复效果[J]. 材料导报, 2019, 33(12): 1983-1988.
[4] 王晶, 史雪婷, 冯利邦, 强小虎, 刘艳花. 长效超疏水铜表面的构建及耐磨性和自清洁性能[J]. 材料导报, 2018, 32(24): 4314-4318.
[5] 毛倩瑾, 伍文文, 梁鹏, 王子明, 崔素萍. 海藻酸钙/环氧微胶囊在水泥基材料中的自修复作用[J]. 材料导报, 2018, 32(22): 4016-4021.
[6] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[7] 张鹏, 冯竟竟, 陈伟, 刘虎, 杨进波. 混凝土损伤自修复技术的研究与进展[J]. 材料导报, 2018, 32(19): 3375-3386.
[8] 钱志强,吴志坚,王世栋,张慧芳,刘海宁,叶秀深,李权. 镁合金超疏水表面的制备技术与应用研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 102-109.
[9] 吕生华, 朱琳琳, 贾春茂, 李莹, 贺亚亚, 赵浩然, 邓丽娟. PCs/GO复合物对水泥基材料微观结构和力学性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 125-129.
[10] 吉海燕,范亚敏,吴殿国,费 婷,黄济华,许 晖,李华明. 仿生超疏水聚丙烯/二氧化钛复合薄膜的构筑及性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 101-104.
[11] 高英力,代凯明,李学坤,马 路,何 倍. 超疏水沥青混凝土抗凝冰性能及评价[J]. 《材料导报》期刊社, 2017, 31(24): 63-68.
[12] 屈孟男, 马利利, 何金梅, 袁明娟, 姚亚丽, 刘向荣. 特异润湿型油水分离材料的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 152-161.
[13] 王洪杰, 王闻宇, 王赫, 金欣, 李嘉禄, 林童, 朱正涛. 用于油水分离的静电纺纳米纤维膜研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 144-151.
[14] 徐晶, 王彬彬. 陶粒负载微生物的混凝土开裂自修复研究*[J]. 《材料导报》期刊社, 2017, 31(14): 127-131.
[15] 高英力, 李学坤, 代凯明, 余先明, 袁江. 超疏水仿生水泥混凝土路面防覆冰技术及效能评价*[J]. 《材料导报》期刊社, 2017, 31(14): 132-137.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed