Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 63-68    https://doi.org/10.11896/j.issn.1005-023X.2017.024.013
  第一届先进胶凝材料研究与应用学术会议 |
超疏水沥青混凝土抗凝冰性能及评价
高英力1,2,代凯明2,李学坤2,马 路2,何 倍2
1 山西省交通科学研究院,黄土地区公路建设与养护技术交通行业重点实验室,太原 030006;
2 长沙理工大学交通运输工程学院,长沙 410114
Performance and Evaluation of Anti-icing Super-hydrophobic Asphalt Concrete
GAO Yingli1,2, DAI Kaiming2, LI Xuekun2, MA Lu2, HE Bei2
1 Key Laboratory of Highway Construction & Maintenance Technology of Transportation Industry in Loess Region, Shanxi Transportation Research Institute, Taiyuan 030006;
2 School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114
下载:  全 文 ( PDF ) ( 852KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 引入超疏水设计理念,制备了具有超疏水抗凝冰性能的沥青混凝土试件。通过模拟试验和理论分析相结合,开展了超疏水沥青混凝土抗凝冰性能研究,测定了普通试件及超疏水试件抗凝冰性能差异,分析了不同工况下超疏水沥青混凝土试件的抗凝冰性能。通过接触角测定及表面能计算,评价了超疏水沥青混凝土的防冰、疏冰性能。结果表明,超疏水沥青混凝土可有效促进液滴滚落,滚落率高达80%。通过自行设计的落锤冲击试验间接测定了超疏水沥青混凝土试件的“冰-路”附着力,仅为普通沥青混凝土试件的38.5%。基于不同工况,降雪环境下超疏水沥青混凝土试件冰的残留率最低。接触角试验和表面能计算表明,超疏水沥青混凝土的表面能为1.97 mJ/m2,仅为普通沥青混凝土的5.1%,体现了良好的抗凝冰性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高英力
代凯明
李学坤
马 路
何 倍
关键词:  超疏水  抗凝冰  沥青混凝土  评价  表面能    
Abstract: Asphalt concrete specimens with super hydrophobicity and ice resistance were made through introducing the principle of super hydrophobicity. The difference of anti-icing performance of common specimens and super hydrophobic specimens, the difference of anti-icing performance of super hydrophobic asphalt concrete under different environments were tested by simulation test and theoretical analysis. Anti-icing performance of super hydrophobic asphalt concrete was evaluated by contact angle and surface energy. The results showed that super-hydrophobic asphalt concrete could promote the drop of water, the dropping rate could reach 80%. The adhesion between ice and road surface was measured indirectly by self-designed impact test, and the adhesion was 38.5% of the ordinary specimen. The residual rate of ice on the specimen was the least in snowy conditions. The surface energy of super hydrophobic asphalt concrete was 1.97 mJ/m2, which was measured by the measurement of contact angle and the calculation of surface energy, it was only 5.1% of ordinary asphalt concrete and showed a good anti-icing performance.
Key words:  super-hydrophobicity    anti-icing    asphalt concrete    simulation test    surface energy
               出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  U416  
基金资助: 湖南省交通厅科技计划项目(201313);黄土地区公路建设与养护技术交通行业重点实验室和山西省重点实验室开放课题(KLTLR-Y14-12)
作者简介:  高英力:男,1977年生,博士,教授,主要研究方向为道路工程材料 E-mail:yingligao@126.com
引用本文:    
高英力,代凯明,李学坤,马 路,何 倍. 超疏水沥青混凝土抗凝冰性能及评价[J]. 《材料导报》期刊社, 2017, 31(24): 63-68.
GAO Yingli, DAI Kaiming, LI Xuekun, MA Lu, HE Bei. Performance and Evaluation of Anti-icing Super-hydrophobic Asphalt Concrete. Materials Reports, 2017, 31(24): 63-68.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.013  或          http://www.mater-rep.com/CN/Y2017/V31/I24/63
1 Zeng B, Yan C X, Yu L, et al. Analysis of winter temperature in south china during 1960-2009[J]. Plateau Mountain Meteorology Res, 2016,36(2):46(in Chinese).
曾波, 闫彩霞, 余莲,等. 我国南方地区1960-2009年冬季气温分析[J]. 高原山地气象研究, 2016,36(2):46.
2 Tan Y Q, Zhao L D, Lan B W, et al. Performance of asphalt mixture under repeated condensation of ice[J]. J Build Mater, 2011,14(6):761(in Chinese).
谭忆秋, 赵立东, 蓝碧武,等. 反复凝冰作用下沥青混合料性能研究[J]. 建筑材料学报, 2011,14(6):761.
3 Yu W B, Li S Y, Feng W J, et al. Snow and ice melting techniques of pavement: State of the art and development tendency[J]. J Gla-ciology Geocryology, 2011(4):933(in Chinese).
喻文兵,李双洋,冯文杰,等. 道路融雪除冰技术现状与发展趋势分析[J]. 冰川冻土, 2011(4):933.
4 Xiao Q Y, Hu H X, Wang L J, et al. Study on erosion of new dei-cing salt on asphalt mixture based on surface energy theory[J]. J Hebei University of Technology, 2012,41(4):64(in Chinese).
肖庆一, 胡海学, 王丽娟,等. 基于表面能理论的除冰盐侵蚀沥青-矿料界面机理研究[J].河北工业大学学报, 2012,41(4):64.
5 Kang J. The research on anticoagulant mixture of ice[D]. Chongqing: Chongqing Jiaotong University, 2011(in Chinese).
康捷. 抗凝冰沥青混合料技术研究[D]. 重庆:重庆交通大学, 2011.
6 Xu R, Ma Y Z, Xiao X Y, et al. Progress in biomimetic superhydrophobic surface coating[J]. New Chemical Materials, 2009,37(12):1(in Chinese).
徐蕊, 马英子, 肖新颜, 等. 仿生超疏水涂层材料研究新进展[J]. 化工新型材料, 2009,37(12):1.
7 Arabzadeh A, Ceylan H, Kim S. Superhydrophobic coatings on asphalt concrete surfaces: Toward smart solutions for winter pavement maintenance[J]. National Res Council, 2016,2551:10.
8 Konstantin S, Michael N, Tom K. Anti-icing and de-icing superhydrophobic concrete to improve the safety on critical elements on roadway pavements[R]. Report No. CFIRE07-03, National Center for Freight & Infrastructure Research & Education, 2013.
9 Konstantin S, Habib T, Jian Z. Superhydrophobic engineered cementitious composites for highway applications: Phase I[R]. Report No. CFIRE 04-09, National Center for Freight & Infrastructure Research & Education, 2013.
10Konstantin S, Habib T, Jian Z. Superhydrophobic engineered cementitious composites for highway bridge applications: Technology transfer and implementation[R]. Report No. CFIRE06-03, National Center for Freight & Infrastructure Research & Education, 2013.
11Scott M, Ismael F V, Konstantin S. Hydrophobic engineered cementitious composites for highway applications[J]. Cem Concr Compos, 2015,57(3):68.
12Li X Y, Yang B B, Zhang Y Q. A study on super-hydrophobic coa-ting in anti-icing of glass/porcelain insulator[J]. J Sol-Gel Sci Technol, 2014,69(2):441.
13Xiao J, Chaudhuri S. Design of anti-icing coatings using supercooled droplets as nano-to-microscale probes[J]. Langmuir, 2012,28:4434.
14Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997,202(1):1.
15Sun B. Fabrication of superhydrophobic surface on cooper and its application in anti-icing and anti-frosting[D]. Nanjing: Nanjing University of Science and Technology, 2014(in Chinese).
孙宝. 铜基超疏水界面构筑及抗结冰、抗结霜性能研究[D]. 南京:南京理工大学, 2014.
16Wang H, Gu G H, Qiu G Z, et al. Evaluation of surface free energy of polymers by contact angle goniometry[J]. J Central South University (Science and Technology), 2006,37(5):942(in Chinese).
王晖, 顾帼华, 邱冠周, 等. 接触角法测量高分子材料的表面能[J]. 中南大学学报(自然科学版), 2006,37(5):942.
17Liu Y M, Shi J Y, Lu Q Q, et al. Research progress on calculation of solid surface tension based on Young’s equation[J]. Mater Rev:Rev, 2013,27(6):123(in Chinese).
刘永明, 施建宇, 鹿芹芹,等. 基于杨氏方程的固体表面能计算研究进展[J]. 材料导报:综述篇, 2013,27(6):123.
18Van O C J, Chaudhury M K, Good R J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems[J]. Chem Rev, 1988,88(6):927.
19Van O C J, Chaudhury M K, Good R J. The mechanism of phase separation of polymers in organic media-apolar and polar systems[J]. Separation Sci Technol, 1989,24(1-2):15.
20Chen Y, Shan L Y, Tan Y Q, et al. Research on functional repairing material for asphalt pavement to resist condensate ice damage[J]. J Build Mater, 2013,16(3):529(in Chinese).
陈瑶, 单丽岩, 谭忆秋,等. 沥青路面抗凝冰损伤功能性修复材料试验研究 [J]. 建筑材料学报, 2013,16(3):529.
[1] 陈坤, 李君, 曲大为, 卢强. 基于LCA评价模型的动力电池回收阶段环境性研究[J]. 材料导报, 2019, 33(z1): 53-56.
[2] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[3] 周莹, 肖利吉, 姚丽, 徐祖顺. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 1234-1242.
[4] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[5] 周薛霞,杨赞中,徐艳娇,王路,孙海滨,王永在,杜庆洋,乐红志. 轻质多孔混凝土防水剂的研究进展[J]. 材料导报, 2019, 33(15): 2546-2551.
[6] 王威娜,徐青杰,周圣雄,秦煜,闫强. 沥青-集料黏附作用评价方法综述[J]. 材料导报, 2019, 33(13): 2197-2205.
[7] 陈谦, 王朝辉, 樊振通, 侯荣国, 陈姣. 浇注式导电沥青混凝土组合结构热传导效应预估模型[J]. 材料导报, 2019, 33(10): 1659-1665.
[8] 朱建勇, 何兆益. 沥青胶结料自愈合研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 847-854.
[9] 高礼雄,丁汝茜,姚燕,荣辉,王海良,张磊. 混凝土的微生物腐蚀:机理、影响因素、评价指标及防护技术[J]. 《材料导报》期刊社, 2018, 32(3): 503-509.
[10] 王晶, 史雪婷, 冯利邦, 强小虎, 刘艳花. 长效超疏水铜表面的构建及耐磨性和自清洁性能[J]. 材料导报, 2018, 32(24): 4314-4318.
[11] 高思雯, 龚先政, 孙博学. 典型锂电池中间相炭微球负极材料生产的能耗与碳排放分析[J]. 材料导报, 2018, 32(22): 4022-4026.
[12] 王朝辉, 韩晓霞, 陈姣, 侯荣国, 郑少鹏. 浇注式导电沥青混凝土传导热效果[J]. 材料导报, 2018, 32(22): 3891-3899.
[13] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[14] 张鹏, 冯竟竟, 陈伟, 刘虎, 杨进波. 混凝土损伤自修复技术的研究与进展[J]. 材料导报, 2018, 32(19): 3375-3386.
[15] 王朝辉, 傅一, 陈谦, 陈宝, 周骊巍. 环氧沥青混凝土桥面铺装材料研究与应用进展[J]. 材料导报, 2018, 32(17): 2992-3009.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed