Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 56-62    https://doi.org/10.11896/j.issn.1005-023X.2017.024.012
  第一届先进胶凝材料研究与应用学术会议 |
硅质机制砂改性剂的机理研究与应用
张广田1,2,刘娟红1,隋宝龙3,陈朝阳2
1 北京科技大学土木与资源工程学院,北京 100083;
2 河北省建筑科学研究院,石家庄 050227;
3 河北建研科技有限公司,石家庄 050227
Mechanism Study and Application of the Modifier for Siliceous Machine-made Sand
ZHANG Guangtian1,2, LIU Juanhong1, SUI Baolong3, CHEN Zhaoyang2
1 College of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083;
2 Hebei Academy of Building Research,Shijiazhuang 050227;
3 Hebei Institute of Technology Co., Ltd.,Shijiazhuang 050227
下载:  全 文 ( PDF ) ( 895KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硅质机制砂由于石粉含量高,石粉吸附减水剂能力强,制备的混凝土工作性较差。通过制备出一种小分子表面活性剂(简称改性剂),来改善硅质机制砂出现的问题。首先分析了机制砂石粉的成分、形貌等特点。比较了掺加改性剂与不掺加改性剂时不同石粉含量的砂浆的扩展度,并应用在两种硅质机制砂混凝土中。最后利用粒度分析、显微粒度图像、SEM、Zeta电位等方法,分析了改性剂的作用机理。实验结果表明:硅质机制砂改性剂可以有效地增加砂浆扩展度,提高混凝土的初始坍落度,减少混凝土的坍落度损失,并且对强度没有太大影响。改性剂主要通过超强分散与吸附络合作用来提高硅质机制砂混凝土的工作性,减少负面影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张广田
刘娟红
隋宝龙
陈朝阳
关键词:  硅质机制砂  石粉  改性剂  减水剂    
Abstract: Because of the high content of stone powder and the ability of stone powder to absorb water reducing agent, the workability of concrete prepared by siliceous machine-made sand is poor. A small molecule surfactant, referred to as modifier, was prepared to improve the occurrence of siliceous sand. Firstly, the composition, morphology and characteristics of machine-made sand powder were analyzed. Then, the expansion degree of mortar of different stone powder with and without the addition of modifier was compared and applied in two kinds of siliceous machine-made sand concrete. Finally, the mechanism of modifier was analyzed by means of particle size analysis, micrograph, SEM and Zeta potential. Experimental results show that the modified agent of siliceous mechanism sand can effectively increase the degree of expansion of concrete mortar which improve the initial slump effectively and reduce slump loss of concrete. And it has little influence on the strength. The modified agent is mainly used to improve the workability of the siliceous mechanism sand concrete by complexation with strong dispersion and adsorption,and reduce the negative influence.
Key words:  siliceous machine-made sand    sandstone powder    modifier    water reducing agent
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TU525  
基金资助: 国家自然科学基金(51578039);河北省建设科技研究计划项目(2016-104);河北省建设科技研究指导性计划项目(2017-2014)
通讯作者:  刘娟红:女,1966年生,博士,教授,主要从事水泥基材料方面的研究 E-mail:juanhong1966@hotmail.com   
作者简介:  张广田:男,1985年生,博士研究生,工程师,从事高性能混凝土与外加剂研究 E-mail:syzx1206@163.com
引用本文:    
张广田,刘娟红,隋宝龙,陈朝阳. 硅质机制砂改性剂的机理研究与应用[J]. 《材料导报》期刊社, 2017, 31(24): 56-62.
ZHANG Guangtian, LIU Juanhong, SUI Baolong, CHEN Zhaoyang. Mechanism Study and Application of the Modifier for Siliceous Machine-made Sand. Materials Reports, 2017, 31(24): 56-62.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.012  或          https://www.mater-rep.com/CN/Y2017/V31/I24/56
1 Song Shaomin, Liu Juanhong, Xu Guoqiang. The summarize and study of the application of limestone powder in concrete[J]. China Concret,2009(12):38(in Chinese).
宋少民,刘娟红,徐国强. 石灰石粉在混凝土中应用的综述与研究[J]. 混凝土世界,2009(12):38.
2 Liu Zhanao,Zhou Mingkai,Li Beixing.Research progresson influence of microfines on manufactured sand concrete′s performance[J]. Mater Rev:Rev, 2014, 28(10): 100(in Chinese).
刘战鳌,周明凯,李北星. 石粉对机制砂混凝土性能影响的研究进展[J]. 材料导报:综述篇,2014,28(10):100.
3 Chen Jianxiong, Li Hongfang, Chen Hanbin. Study of super high strength concrete containing super fine limestone powder and titanium slag powder[J]. J Build Mater, 2005,8(6):672.
4 Zhou Yongxiang, Wang Yonghai, Wang Siya, et al. The characteristic of limestone powder and its effect on performance of concrete[J].Constr Technol,2014(9):23(in Chinese).
周永祥,王永海,王思娅,等.石灰石粉的特性及对混凝土性能的影响[J].施工技术,2014(9):23.
5 Cai Jiwei. Research of effects and mechanism of micro fine aggergate concretes[D]. Wuhan:Wuhan University of Technology,2006(in Chinese).
蔡基伟. 石粉对机制砂混凝土性能的影响及机理研究[D]. 武汉:武汉理工大学,2006.
6 周昱程,等.机制砂中硅质石粉含量对混凝土流动性能的影响及改善[C]//第八届全国特种混凝土技术交流会论文集.中国土木工程学会混凝土及预应力分会混凝土质量专业委员会,2017:8.
7 Sui Baolong,Yuan Jie, Zhang Guangtian,et al. An overview of the effects of mud content on the performance of concrete and its control methods[J]. Fiy Ash Cormprutil, 2016(4):61(in Chinese).
隋宝龙,袁杰,张广田,等. 含泥量对混凝土性能的影响及解决方法[J]. 粉煤灰综合利用,2016(4):61.
8 Zhang Guangtian, Gao Zhenguo, Liu Juanhong. Effect of different molecular weight of PASP on the performance of concrete[J].China Concr Cem Products,2016(5):12(in Chinese).
张广田,高振国,刘娟红.不同分子量聚天冬氨酸对混凝土性能的影响[J]. 混凝土与水泥制品,2016(5):12.
9 Tang Yuchao, Chen Liang, Luo Zuoqiu,et al. Development and performance research of new high-plastic-superretarding admixture[J]. Mater Rev, 2015, 29(S1):354(in Chinese).
唐玉超,陈良,罗作球,等. 新型高保塑超缓凝剂的研制与性能研究[J]. 材料导报,2015,29(专辑25):354.
10Ma Kunlin, Long Guangcheng, Xie Youjun,et al. Rheological properties of compound pastes-cement-fly ash-limestone powder[J]. J Chin Ceram Soc,2013(5):582(in Chinese).
马昆林,龙广成,谢友均,等. 水泥-粉煤灰-石灰石粉复合浆体的流变性能[J]. 硅酸盐学报,2013(5):582.
11Ezziane K, et al.Evaluation of rheological parameters of mortar containing various amounts of mineral addition with polycarboxylate superplasticizer[J].Constr Build Mater, 2014,70:549.
12Miao C W, Ran Q P, Liu J P, et al.New generation amphoteric comb-like copolymer superplasticizer and its properties[J].Polym Polym Compos, 2011,19(1):1.
13Fu Shifeng, Zhang Guangtian, Liu Juanhong. Study on mechanical and durability of recycled lightweight aggregate concrete[J].Building Struct, 2016(12):41(in Chinese).
付士峰,张广田,刘娟红. 再生轻骨料自密实混凝土力学和耐久性能研究[J]. 建筑结构,2016(12):41.
14Jalal M, et al.Comparative study on effects of class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete[J].Constr Build Mater, 2015,94:90.
15Shen Yeqing, Zhai Chao,Sun Chengyu. Influence of molding process on the structure and performance of hardened cement pastes[J].Mater Rev: Rev,2016,30(8):100(in Chinese).
沈业青,翟超,孙成玉. 水泥材料成型过程对硬化体结构与性能的影响[J]. 材料导报:综述篇,2016,30(8):100.
16Guo W J, Sun N, Qin J J, et al.Synthesis and properties of an amphoteric polycarboxylic acid-based superplasticizer used in sulfoaluminate cement[J].J Appl Polym Sci, 2012,125(1):283.
17Zhang Ronghua, Zhu Zhiliang, Deng Shouquan, et al. Study on the coordination chemistry of ATMP with Ca2+, Mg2+ in aqueoussolution[J]. Ind Water Treatment, 2003,23(7):25(in Chinese).
张荣华, 朱志良, 邓守权, 等. ATMP 对钙、镁离子阻垢作用机理的配位化学研究[J].工业水处理,2003,23(7):25.
18秦廉. 复合屏蔽剂对高含泥量骨料混凝土性能的改善效果及其机理[C]//2011年混凝土与水泥制品学术讨论会论文集.中国硅酸盐学会混凝土与水泥制品学分会,2011:7.
19Lei L, Plank J. A concept for a polycarboxylate superplasticizer possessing enhanced clay tolerance[J]. Cem Concr Res, 2012,42(10):1299.
[1] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[2] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[3] 向顺成, 郑廷祥, 高英力, 史威, 蒋震, 何彦琪, 曾维. 聚氨酯改性聚羧酸盐的合成及与水泥净浆的相互作用[J]. 材料导报, 2024, 38(21): 23040167-7.
[4] 卢通, 钱珊珊, 刘晓, 高瑞军, 郑春扬. 柠檬酸改性低分子量减水剂的合成、性能及机理[J]. 材料导报, 2024, 38(2): 22020188-6.
[5] 刘源涛, 董必钦, 洪舒贤, 王琰帅, 房国豪. NaAlO2激发石灰石粉的净浆中胶凝物相表征[J]. 材料导报, 2024, 38(13): 23020027-6.
[6] 李辰治, 蒋林华. 石灰石粉掺量对混凝土中钢筋脱钝临界氯离子含量的影响[J]. 材料导报, 2024, 38(1): 22090288-7.
[7] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[8] 王痛快, 赵琪, 雷婷, 杨文伟. GFRP管-石粉地聚物混凝土-钢管组合短柱轴压性能研究[J]. 材料导报, 2023, 37(23): 22050256-9.
[9] 王将华, 薛翠真, 张宇, 张云升, 乔宏霞, 胡向楠, 赵洋. 花岗岩石粉对砂浆干燥收缩性能的影响[J]. 材料导报, 2023, 37(22): 22050103-6.
[10] 朱倍, 徐迅, 胡海龙, 余波, 朱妍, 甘露. 基于改性剂调控517相改善碱式硫酸镁水泥耐水性能[J]. 材料导报, 2023, 37(19): 22050264-6.
[11] 戴民, 李姝蓉, 赵明宇. 基于流变模型的降黏型聚羧酸减水剂的试验研究[J]. 材料导报, 2023, 37(17): 22030273-5.
[12] 刘源涛, 王琰帅, 董必钦. 偏铝酸钠激发石灰石粉的胶凝材料合成机理研究[J]. 材料导报, 2023, 37(1): 22030034-5.
[13] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[14] 陈景, 杨长辉, 高育欣, 杨文, 王福涛, 刘明, 曾超. 微交联降粘型聚羧酸减水剂的合成及其在低水胶比体系中的作用[J]. 材料导报, 2022, 36(9): 20090167-8.
[15] 单广程, 陈健, 乔敏, 高南箫, 赵爽, 吴井志, 朱伯淞, 冉千平. 缓释技术在混凝土中的应用研究进展[J]. 材料导报, 2022, 36(5): 20050237-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed