Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22030273-5    https://doi.org/10.11896/cldb.22030273
  高分子与聚合物基复合材料 |
基于流变模型的降黏型聚羧酸减水剂的试验研究
戴民*, 李姝蓉, 赵明宇
沈阳建筑大学材料科学与工程学院,沈阳 110168
Experimental Study on Viscosity-reducing Polycarboxylate Water Reducer Based on Rheological Model
DAI Min*, LI Shurong, ZHAO Mingyu
School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
下载:  全 文 ( PDF ) ( 3025KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决高强混凝土存在的黏度过高影响施工的问题,本研究对减水剂分子结构进行设计,提高了聚羧酸减水剂对低水胶比胶凝材料体系的黏度调节能力。以异戊烯醇聚氧乙烯醚(TPEG)、丙烯酸、巯基丙酸等为原材料,分别加入功能性单体甲基丙烯酸甲酯(MMA)、甲基丙烯磺酸钠(SMAS)和2-羟乙基甲基丙烯酸酯磷酸酯(HEMAP),通过自由基聚合反应合成了降黏型聚羧酸减水剂。通过红外光谱仪对减水剂结构进行表征,结合流动度测试探究了其分散性能规律,结合流变学测试定性分析了其降黏性能规律。实验结果表明,适量掺加三种功能单体时,合成的聚羧酸减水剂不仅获得了良好的分散性,而且降黏效果显著;流变学测试结果与Bingham流变模型具有良好的相关性,可以反映减水剂的降黏性能规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戴民
李姝蓉
赵明宇
关键词:  聚羧酸减水剂  降黏性能  微坍落度法  流变模型    
Abstract: In order to solve the problem of high viscosity of high-strength concrete which affects the construction, this study designed the molecular structure of polycarboxylate water reducer (PCE) to improve the viscosity adjustment ability of PCE in low water-cement ratio cementitious material systems. The viscosity-reducing PCE was synthesized by free radical polymerization reaction using isopentenyl polyoxyethylene ether (TPEG), acrylic acid and mercaptopropionic acid as basic ingredients, methyl methacrylate (MMA), sodium methallyl sulfonate (SMAS) and 2-hydroxyethyl methacrylate phosphate ester (HEMAP) as functional monomers. The characteristic functional groups on PCE were revealed by FT-IR spectra, the dispersion and the viscosity-reducing properties of PCE were characterized in combination with flowability tests and rheological tests, respectively. Experimental results showed that PCE has good dispersion and obvious viscosity-reducing performance when the functional monomers was adjusted to the optimal ratio, and the rheological test results were correlated well with the Bingham rheological model.
Key words:  polycarboxylate water reducer    viscosity-reducing    micro slump method    rheological model
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TU528.042  
基金资助: 国家自然科学基金(51908378)
通讯作者:  *戴民,沈阳建筑大学材料科学与工程学院副教授、硕士研究生导师。1996年沈阳建筑工程学院建材系建筑材料专业本科毕业留校工作至今,2002年沈阳建筑工程学院硕士毕业。目前主要从事高性能混凝土及外加剂、固体废弃物资源化以及新型建筑材料方面的教学与研究工作。发表论文40余篇,发明专利授权7项。superconductor@126.com   
引用本文:    
戴民, 李姝蓉, 赵明宇. 基于流变模型的降黏型聚羧酸减水剂的试验研究[J]. 材料导报, 2023, 37(17): 22030273-5.
DAI Min, LI Shurong, ZHAO Mingyu. Experimental Study on Viscosity-reducing Polycarboxylate Water Reducer Based on Rheological Model. Materials Reports, 2023, 37(17): 22030273-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030273  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22030273
1 Wang D H, Shi C J, Wu L M. Bulletin of the Chinese Ceramic Society, 2016, 35(1), 141 (in Chinese).
王德辉, 史才军, 吴林妹. 硅酸盐通报, 2016, 35(1), 141.
2 Yin Y C, Wang N, Han Y. Concrete, 2019(5), 138 (in Chinese).
殷艳春, 王宁, 韩宇. 混凝土, 2019(5), 138.
3 Feng N Q, Ye H W, Ma Z X. Construction Technology, 2018, 47(6), 117 (in Chinese).
冯乃谦, 叶浩文, 马展祥. 施工技术, 2018, 47(6), 117.
4 Qin S Z, Feng D L, Xin F G. Concrete, 2019(2), 95 (in Chinese).
覃善总, 冯东亮, 辛福光. 混凝土, 2019(2), 95
5 Xiongyi Peng, Conghua Yi, Xueqing Qiu, et al. Polymers & Polymer Composites, 2012, 20(8), 725
6 Shu X, Wang Y W, Yang Y. Journal of Materials in Civil Engineering, 2019, 31(6), 04019092-1.
7 Zhang M, Zhang S H, Duan B, et al. Bulletin of the Chinese Ceramic Society, 2015, 34(3), 868 (in Chinese).
张明, 张栓红, 段彬, 等. 硅酸盐通报, 2015, 34(3), 868.
8 Shu Xin, Zhao Hongxia, Wan Xiumei, et al. Journal of Disperion Science and Technology, 2017, 38(2), 256
9 Wang Y, Wang S P, Zhang Y L, et al. Materials Reports, 2019, 33(S2), 646 (in Chinese).
汪源, 汪苏平, 张亚利, 等. 材料导报, 2019, 33(S2), 646.
10 Kong X M, Hou S S, Shi Z H. Journal of Building Materials, 2014, 17(1), 1 (in Chinese).
孔祥明, 侯珊珊, 史志花. 建筑材料学报, 2014, 17(1), 1.
11 He Y, Zhang X, Wang Y, et al. Journal of Wuhan University of Technology-Materials Science Edtion, 2019, 34(5), 1163.
12 He Y, Shu X, Wang X M, et al. New Building Material, 2019, 46(10), 72 (in Chinese).
何易, 舒鑫, 王秀梅, 等. 新型建筑材料, 2019, 46(10), 72.
13 Qian S S, Yao Y, Wang Z M, et al. Journal of the Chinese Ceramic Society, 2021, 49(5), 910 (in Chinese).
钱珊珊, 姚燕, 王子明, 等. 硅酸盐学报, 2021, 49(5), 910.
14 Fang M M, Lin D, Xi X L, et al. Concrete, 2007(9), 25 (in Chinese).
房满满, 林东, 西晓林, 等. 混凝土, 2007(9), 25.
15 Li J J, Tan D L, Niu J G. Materials Reports, 2022, 36(9), 102 (in Chinese).
李京军, 谭德林, 牛建刚. 材料导报. 2020, 36(9), 102
16 Wu Y H, Dang Z X, Zhu T, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(9), 2732 (in Chinese).
伍勇华, 党梓轩, 祝婷, 等. 硅酸盐通报, 2020, 39(9), 2732.
17 Golazewski J, Szwabowski J. Cement and Concrete Research, 2004, 34(2), 235.
18 Wu Q. The development of mix design method for self-compecting concrete based on the rheological characteristics of paste, Ph. D. Thesis, Tsinghua University, China, 2013 (in Chinese).
吴琼. 基于净浆流变性的自密实混凝土配合比设计方法研究, 博士论文, 清华大学, 2013.
19 Roussel N, Stefani C, Leroy R. Cement and Concrete Research, 2005, 35(5), 817.
20 Zeng C, Lan C, Wang F T, et al. New Building Material, 2019, 46(6), 7 (in Chinese).
曾超, 兰聪, 王福涛, 等. 新型建筑材料. 2019, 46(6), 7.
[1] 陈景, 杨长辉, 高育欣, 杨文, 王福涛, 刘明, 曾超. 微交联降粘型聚羧酸减水剂的合成及其在低水胶比体系中的作用[J]. 材料导报, 2022, 36(9): 20090167-8.
[2] 单广程, 陈健, 乔敏, 高南箫, 赵爽, 吴井志, 朱伯淞, 冉千平. 缓释技术在混凝土中的应用研究进展[J]. 材料导报, 2022, 36(5): 20050237-7.
[3] 刘玲, 衣军勇, 肖刚, 方伟, 崔景亮, 田洪雷, 赵曰琦. 蒙脱土对聚羧酸减水剂的吸附行为研究[J]. 材料导报, 2021, 35(z2): 158-162.
[4] 潘阳, 汪源, 汪苏平, 胡志豪, 李正平, 张满, 张云. 高保坍型聚羧酸减水剂的制备及其在水溶液中的自组装行为[J]. 材料导报, 2021, 35(z2): 167-171.
[5] 文轩, 胡志豪, 汪苏平, 张云, 汪源. 交联型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2021, 35(z2): 172-175.
[6] 周文娟, 段佳豪, 谢谦, 王华萍. 抗泥型聚羧酸减水剂研究与应用现状[J]. 材料导报, 2021, 35(Z1): 650-653.
[7] 周文娟, 谢谦, 赵磊. 再生微粉对聚羧酸减水剂的吸附性能研究[J]. 材料导报, 2020, 34(Z1): 246-248.
[8] 伍勇华, 祝婷, 党梓轩, 李莹, 李国新. 中和与否对聚羧酸减水剂性能的影响及机理分析[J]. 材料导报, 2020, 34(Z1): 592-595.
[9] 纪宪坤, 汪源, 汪苏平, 胡志豪. 酯化改性抗泥型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2020, 34(Z1): 596-600.
[10] 白静静, 王敏, 史才军, 沙胜男, 向顺成, 周贝贝, 马一菡. 降粘性聚羧酸减水剂的设计合成及在低水胶比水泥-硅灰体系中的作用[J]. 材料导报, 2020, 34(6): 6172-6179.
[11] 汪源, 汪苏平, 张亚利, 纪宪坤. 降粘型聚羧酸减水剂的制备及性能[J]. 材料导报, 2019, 33(Z2): 646-650.
[12] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[13] 都蓉蓉, 张雄, 顾明东, 季涛. 聚羧酸减水剂与增强组分的复合效应及原理[J]. 材料导报, 2019, 33(14): 2461-2466.
[14] 何廷树, 杨仁和, 徐一伦, 李同新, 房佳斌. 掺加改性淀粉制备聚羧酸减水剂及其应用[J]. 《材料导报》期刊社, 2018, 32(4): 646-649.
[15] 刘晓, 赖光洪, 许谦, 管佳男, 王子明, 崔素萍, 兰明章. 基于抑制粘土负作用效果的聚羧酸减水剂的设计合成及机理[J]. 材料导报, 2018, 32(22): 3880-3884.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed