Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6172-6179    https://doi.org/10.11896/cldb.19040139
  高分子与聚合物基复合材料 |
降粘性聚羧酸减水剂的设计合成及在低水胶比水泥-硅灰体系中的作用
白静静1, 王敏1, 史才军1, 沙胜男1, 向顺成2, 周贝贝1, 马一菡1
1 湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082;
2 长沙理工大学交通运输工程学院,长沙 410114
Design, Synthesis of Viscosity-reducing Polycarboxylate Superplasticizer and Its Influence on Cement-Silica Fume Paste with Low Water-binder Ratio
BAI Jingjing1, WANG Min1, SHI Caijun1, SHA Shengnan1, XIANG Shuncheng2, ZHOU Beibei1, MA Yihan1
1 Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China;
2 School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 4763KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 现有聚羧酸减水剂不能满足低水胶比、硅灰掺量高的胶凝材料体系的流动性及粘度调节需求。本研究采用分子设计的方法,以过硫酸铵(APS)为引发剂,丙烯酸(AA)、马来酸酐(MAH)、2-丙烯酰胺-2-甲基丙烷磺酸(AMPS)、乙烯基三乙氧基硅烷(VTEO)、烯丙醇聚氧乙烯醚(APEG)为单体,通过自由基共聚合成了分子量小、主链含硅羟基、羧基密度高的降粘性聚羧酸减水剂(S-PCEs)。通过傅里叶红外光谱仪(FTIR)、凝胶渗透色谱(GPC)对S-PCEs的结构进行了表征,比较了其与市售聚羧酸基减水剂(C-PCEs)的表面张力、Zeta电位、吸附行为等理化性质差异及对低水胶比水泥-硅灰浆体流动性、流变及触变性能的影响差异。最后,探究了S-PCEs的作用机理。研究结果表明:S-PCEs在低水胶比水泥-硅灰体系中具有良好的分散性,当其折固掺量为2%时,低水胶比(w/b=0.18)水泥-硅灰浆体的初始流动度及60min时的流动度较掺C-PCEs的浆体分别提高了22.37%和20.83%,且随着水胶比的降低或硅灰掺量的提高,S-PCEs对胶凝材料的分散优势更加明显。相比于C-PCEs,S-PCEs的掺入使低水胶比水泥-硅灰体系的屈服应力下降7.95%,等效塑性粘度降低61.31%,触变环的面积减少52.98%。一方面,S-PCEs在低水胶比水泥-硅灰体系中有更大的吸附量,单位面积的胶凝材料组分表面吸附的分子个数更多,因此对絮凝结构的分散效果更好;另一方面,加入S-PCEs后液相表面张力显著降低,胶凝材料颗粒表面的结合水含量减少。因此,掺S-PCEs的体系中存在更多的自由水,S-PCEs使低水胶比水泥-硅灰浆体的流动性提高,粘度降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白静静
王敏
史才军
沙胜男
向顺成
周贝贝
马一菡
关键词:  降粘性聚羧酸减水剂(S-PCEs)  低水胶比  硅灰  分散    
Abstract: Existing superplasticizer cannot meet the requirements of fluidity and viscosity regulation of cementitious materials with low water-binder ratio and high silica fume (SF) content. A novel type viscosity-reducing polycarboxylate superplasticizer (S-PCEs) was synthesized by free radical copolymerization as the ammonium persulfate (APS) was initiator, acrylic acid (AA), maleic anhydride (MAH), 2-acrylamide-2-methylpropane sulfonic acid (AMPS), vinyltriethoxysilane (VTEO) and allyl alcohol polyoxyethylene ether (APEG) were monomers. Firstly, the structure of S-PCEs was characterized by Fourier transform infrared spectrometer (FTIR) and gel permeation chromatography (GPC). Secondly, the physico-chemical characterizations of the S-PCEs and commercially available polycarboxylate superplasticizer (C-PCEs) and their effects on the fluidity, rheological and thixotropic properties of cement-silica fume paste with low water-binder ratio were compared. Last but not least, the wor-king mechanisms of S-PCEs were investigated. The results showed that S-PCEs had good dispersibility for cement-silica fume paste with low water-binder ratio. The initial fluidity and 60 min fluidity of cement-silica fume paste with low water-binder ratio (w/b=0.18) were 22.37% and 20.83% higher than those of C-PCEs. What's more, with the decrease of water-binder ratio or the increase of silica fume content, the superiority of S-PCEs were more obvious. Compared with C-PCEs, the yield stress of cement-silica fume paste with low water-cement ratio decreased by 7.95%, the equivalent plastic viscosity decreased by 61.31% and the area of thixotropic ring decreased by 52.98% with the addition of S-PCEs. On the one hand, S-PCEs had strong adsorption capacity on the surface of cement and silica fume, so the flocculation structure was well disper-sed. On the other hand, the surface tension of the liquid and the solid-liquid interface of the system containing S-PCEs were lower. The binding water on the particles surface of cementitious materials was less. Therefore, there were more free-water in cement-silica fume paste, which resulted to better fluidity and low viscosity.
Key words:  viscosity-reducing polycarboxylate superplasticizer (S-PCEs)    low water-binder ratio    silica fume    dispersion
               出版日期:  2020-03-25      发布日期:  2020-03-12
ZTFLH:  TU528.042  
基金资助: 国家重点研发计划项目(2018YFC0705400)
作者简介:  白静静,2016年6月毕业于河南理工大学,获得工学学士学位。现为湖南大学土木工程学院硕士研究生,在史才军教授的指导下进行研究。目前主要研究领域为聚羧酸减水剂的制备及应用;史才军,国家第二批“千人计划”特聘专家、湖南省特聘专家、亚洲混凝土联合会副主席、湖南大学985工程创新平台首席科学家、特聘教授、博士研究生导师,Taylor and Francis 学术期刊Journal of Sustainable Cement-based Materials创刊主编,Journal of Ceramics in Modern Technologies共同主编、中国硅酸盐学会会刊《硅酸盐学报》副主编,Elsevier著名学术期刊Cement and Concrete Research和Cement and Concrete Composites、Construction and Building Materials、Taylor & Francis学术期刊Journal of Structural Integrity and Maintenance、西班牙Materiales de Construccion、《材料导报》《建筑材料学报》《重庆交通大学学报》及《中国水泥》等期刊编委。在水泥和混凝土材料的设计、测试、耐久性、智能防渗漏材料及废物的利用和处置方面做了广泛深入的研究工作,发表高水平学术论文300余篇。出版英文著作7部,中文著作3部,合编国际会议英文论文集6本。2014年获湖南省“潇湘友谊”奖。2015-2017年“建设与建造”领域中国高被引学者,2016年全球土木工程领域高被引学者,2001、2007和2016年分别当选为国际能源研究会、美国混凝土学会及国际材料与结构联合会的会士 (Fellow)。
引用本文:    
白静静, 王敏, 史才军, 沙胜男, 向顺成, 周贝贝, 马一菡. 降粘性聚羧酸减水剂的设计合成及在低水胶比水泥-硅灰体系中的作用[J]. 材料导报, 2020, 34(6): 6172-6179.
BAI Jingjing, WANG Min, SHI Caijun, SHA Shengnan, XIANG Shuncheng, ZHOU Beibei, MA Yihan. Design, Synthesis of Viscosity-reducing Polycarboxylate Superplasticizer and Its Influence on Cement-Silica Fume Paste with Low Water-binder Ratio. Materials Reports, 2020, 34(6): 6172-6179.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040139  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6172
1 Shi C, Wu Z, Xiao J, et al.Construction and Building Materials, 2015, 101, 741.
2 Wang D, Shi C, Wu Z, et al. Construction and Building Materials, 2015, 96, 368.
3 Liu J, Shi C, Ma X, et al. Construction and Building Materials, 2017, 146, 702.
4 Lin Y, Yan J, Wang Z, et al. Construction and Building Materials, 2019, 210, 451.
5 Juenger M C G, Siddique R. Cement and Concrete Research, 2015, 78, 71.
6 Yajun J, Cahyadi J H. Cement and Concrete Research, 2003, 33 (10), 1543.
7 Maas A J, Ideker J H, Juenger M C G. Cement and Concrete Research, 2007, 37 (2), 166.
8 Yue Y, Wang J J, Bai Y. Construction and Building Materials, 2018, 159, 610.
9 Jiao D, Shi C, Yuan Q, et al. Cement and Concrete Composites, 2017, 83, 146.
10 Plank J, Sakai E, Miao C W, et al. Cement and Concrete Research, 2015, 78, 81.
11 Mollah M, Adams W J, Schennach R, et al. Advances in Cement research, 2000, 12 (4), 153.
12 Zhang Y, Cai X, Kong X, et al. Construction and Building Materials, 2017, 155, 441.
13 Qian S, Yao Y, Wang Z, et al. Construction and Building Materials, 2018, 169, 452.
14 Lange A, Plank J. Journal of Applied Polymer Science, 2015, 132 (37), 42529.
15 Plank J, Schroefl C, Gruber M, et al. Journal of Advanced Concrete Technology, 2009, 7 (1), 5.
16 Schr F C, Gruber M, Plank J.Cement and Concrete Research, 2012, 42 (11), 1401.
17 Sha S, Shi C, Xiang S, et al. Materials Reports B: Research Papers, 2019, 33 (3), 558 (in Chinese).
沙胜男,史才军,向顺成,等. 材料导报:研究篇,2019, 33 (3), 558.
18 Long X, Li H, Long Y, et al. Bulletin of the Chinese Ceramic Society, 2015, 34 (3), 659 (in Chinese).
龙小柱,李海洋,龙钰,等.硅酸盐通报, 2015, 34 (3), 659.
19 Winnefeld F, Becker S, Pakusch J, et al.Cement and Concrete Compo-sites, 2007, 29 (4), 251.
20 Zingg A, Winnefeld F, Holzer L, et al. Journal of Colloid and Interface Science, 2008, 323 (2), 301.
21 Liu J, Ran Q, Miao C, et al. Materials Transactions, 2012, 53 (3), 553.
22 Wang Z M, Lu Z C, Lu F, et al.Journal of the Chinese Ceramic Society, 2012, 40 (11),1570 (in Chinese).
王子明,卢子臣,路芳,等. 硅酸盐学报, 2012, 40 (11),1570.
23 Lange A, Hirata T, Plank J. Cement and Concrete Research, 2014, 60, 45.
24 Li Y, Yang C, Zhang Y, et al. Construction and Building Materials. 2014, 64, 324.
25 Wu F L, Song J, Xu K N, et al. Journal of Shanxi University, 2017, 40 (1), 143 (in Chinese).
吴凤龙,宋瑾,徐康宁,等. 山西大学学报, 2017, 40 (1), 143.
26 Zhang H J, Dai S R, Li J, et al. Ready-mixed Concrete, 2016 (6), 29 (in Chinese).
张海姣,戴思芮,李娟,等. 商品混凝土, 2016 (6), 29.
27 Kong X M, Liu H, Jiang L F, et al. Journal of the Chinese Ceramic Society, 2014, 42 (5), 635 (in Chinese).
孔祥明,刘辉,蒋凌飞,等. 硅酸盐学报, 2014, 42 (0), 635.
28 Fan W, Stoffelbach F, Rieger J, et al. Cement and Concrete Research, 2012, 42 (1), 166.
29 He Y, Zhang X, Hooton R D. Construction and Building Materials, 2017, 132, 112.
30 Jin Y, Dong Y, Wei D, et al. Progress in Chemistry, 2005 (1), 151 (in Chinese).
金勇,董阳,魏德卿,等, 化学进展, 2005 (1), 151.
31 Huang Y, Liu W, Luo G. Chinese Polymer Bulletin, 2005 (3), 89 (in Chinese).
黄月文,刘伟区,罗广建. 高分子通报, 2005 (3), 89.
32 Alonso M M, Palacios M, Puertas F. Cement and Concrete Composites, 2013, 35 (1), 151.
33 He Y, Zhang X, Shui L, et al. Construction and Building Materials, 2019, 202, 656.
34 Gu Y, Ran Q P, Shu X, et al. Journal of Functional Materials, 2015, 46 (12), 12087 (in Chinese).
顾越,冉千平,舒鑫,等. 功能材料, 2015, 46 (12), 12087.
35 Cyr M, Legrand C, Mouret M. Cement and Concrete Research, 2000, 30 (9), 1477.
36 Feys D, Verhoeven R, De Schutter G. Cement and Concrete Research, 2009, 39 (6), 510.
37 Yahia A.Cement and Concrete Research, 2011, 41 (3), 230.
38 Barnes H A.Journal of Rheology, 1989, 33 (2), 329.
39 She J H, Zhan Z F, Li Z H, et al. Concrete, 2017 (8), 37 (in Chinese).
佘俊辉,詹镇峰,李兆恒,等. 混凝土, 2017 (8), 37.
[1] 伍勇华, 祝婷, 党梓轩, 李莹, 李国新. 中和与否对聚羧酸减水剂性能的影响及机理分析[J]. 材料导报, 2020, 34(Z1): 592-595.
[2] 刘家文, 王冲, 熊光启. 可再分散沥青粉与纳米SiO2复合制备刚性自防水混凝土的研究[J]. 材料导报, 2020, 34(8): 8090-8095.
[3] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[4] 吴永健, 唐仁衡, 欧阳柳章, 李文超, 王英, 黄玲. 分散剂对油性石墨烯导电浆料性能的影响及其在锂电池中的应用[J]. 材料导报, 2020, 34(12): 12030-12035.
[5] 陈明军. 涂料用分散剂研究进展[J]. 材料导报, 2019, 33(Z2): 643-645.
[6] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[7] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[8] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[9] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[10] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[11] 陈超, 孙振平. 硅灰对掺有无碱速凝剂水泥浆体性能的影响[J]. 材料导报, 2019, 33(14): 2348-2353.
[12] 司伟, 丁超, 潘伟. 聚丙烯酸铵和柠檬酸铵分散剂对钇铝石榴石陶瓷透光率的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1209-1212.
[13] 邢小光, 许金余, 白二雷, 朱靖塞, 王谕贤. 纳米Fe2O3水泥基复合材料制备的响应曲面研究[J]. CLDB, 2018, 32(8): 1367-1372.
[14] 张明义, 袁帅, 钟敏, 柏劲松. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 808-814.
[15] 高瑞军, 姚燕, 吴浩, 王玲. 纳米复合粉体分散剂的制备及其分散性能[J]. 材料导报, 2018, 32(22): 3868-3874.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed