Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12030-12035    https://doi.org/10.11896/cldb.19060041
  无机非金属及其复合材料 |
分散剂对油性石墨烯导电浆料性能的影响及其在锂电池中的应用
吴永健1,2, 唐仁衡2, 欧阳柳章1, 李文超2, 王英2, 黄玲2
1 华南理工大学材料科学与工程学院,广东省先进储能材料重点实验室,广州 510641
2 广东省稀有金属研究所,广东省稀土开发及应用重点实验室,广州 510650
Effect of Dispersant on Properties of Oil-based Graphene Conductive Paste and Its Application in Lithium Batteries
WU Yongjian1,2, TANG Renheng2, OUYANG Liuzhang1, LI Wenchao2, WANG Ying2, HUANG Ling2
1 Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou 510641, China
2 Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Guangdong Research Institute of Rare Metals, Guangzhou 510650, China
下载:  全 文 ( PDF ) ( 7539KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作主要探讨不同分散剂在油性体系中对石墨烯分散稳定性的影响,并将获得的导电浆料应用在磷酸铁锂正极,研究其电化学性能。结果表明,与常用的分散剂聚乙烯吡咯烷酮(PVP)和未做分散处理的导电浆料相比,采用BYK-2150和KD1作为分散剂时,石墨烯在悬浮液中的分散浓度和分散稳定性均有显著提升。同时,使用两种导电浆料制备的磷酸铁锂电池显示出良好的电化学性能。以0.2C倍率充放电时,两电池的放电比容量分别达到150.7 mAh/g、156.1 mAh/g,首次放电效率分别为94.4%、97.7%。以1C倍率放电循环50次后,电池的放电比容量仍保持在152.5 mAh/g、159.7 mAh/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴永健
唐仁衡
欧阳柳章
李文超
王英
黄玲
关键词:  石墨烯  分散剂  导电浆料  油性体系  锂离子电池    
Abstract: In this paper, we mainly discuss the effects of different dispersants on the stability of graphene dispersion in oily systems, and apply obtained conductive slurries with different dispersants on LiFePO4(LFP) cathode to investigate their electrochemical performance. Test results show that the dispersion concentration and stability of graphene treated by dispersant BYK-2150 and KD1 in suspension are much better than ordinary dispersant polyvinylpyrrolidone (PVP). In addition, the batteries used BYK-2150 and KD1 conductive slurry exhibit a specific discharge capacity of 150.7 mAh/g and 156.1 mAh/g and the first discharge efficiency of 94.4% and 97.7% at 0.2C, respectively. After 50 cycles, their specific discharge capacity is 152.5 mAh/g and 159.7 mAh/g at 1C, respectively.
Key words:  graphene    dispersant    conductive slurry    oily system    lithium battery
                    发布日期:  2020-05-29
ZTFLH:  TQ610.4+2  
基金资助: 广州市科技计划项目(201802020029);广东省科技计划项目(2017B030314081);广东省稀土产业技术创新联盟平台(2017B090907026);广东省科学院能力建设专项项目(2017GDASCX-0110;2018GDASCX-0110)
通讯作者:  tangrenhgz@163.com   
作者简介:  吴永健,2017年6月毕业于华南师范大学材料物理专业,获得学士学位。现就读于华南理工大学材料科学与工程学院研究所。主要从事锂离子电池石墨烯导电浆料的研究。
唐仁衡,广东省稀有金属研究所教授级高工。2000年研究生毕业于中南工业大学冶金物理化学专业,主要研究方向为稀土功能材料和新能源材料。主持包括广东省重大专项“高性能低成本动力电池材料关键技术的研发与产业化”等省市级科研项目,参与国家“863计划”项目。在国内外学术期刊上发表论文50余篇,申请国家发明专利20多项。
引用本文:    
吴永健, 唐仁衡, 欧阳柳章, 李文超, 王英, 黄玲. 分散剂对油性石墨烯导电浆料性能的影响及其在锂电池中的应用[J]. 材料导报, 2020, 34(12): 12030-12035.
WU Yongjian, TANG Renheng, OUYANG Liuzhang, LI Wenchao, WANG Ying, HUANG Ling. Effect of Dispersant on Properties of Oil-based Graphene Conductive Paste and Its Application in Lithium Batteries. Materials Reports, 2020, 34(12): 12030-12035.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060041  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12030
1 Wang J L, Jiang C H, Li H. Technology Wind,2019(13),233(in Chinese).
王丽佳,姜昌辉,李赫.科技风,2019(13),233.
2 Li C L, Xie Y C, Li X F. New Chemical Materials,2018,46(7),25(in Chinese).
李春雷,解莹春,李祥飞.化工新型材料,2018,46(7),25.
3 Su F Y, Tang R, He Y B, et al. Chinese Science Bulletin,2017,62(32),3743(in Chinese).
苏方远,唐睿,贺艳兵,等.科学通报,2017,62(32),3743.
4 Kucinskis G, Bajars G, Kleperis J. Journal of Power Sources,2013,240,66.
5 Wang Jiajun, Sun Xueliang. Energy & Environmental Science,2012,5(1),5163.
6 Zhao J P, Xie N S, Wang S H. Foundry Technology,2018,39(12),2887(in Chinese).
赵娟平,解念锁,王少华.铸造技术,2018,39(12),2887.
7 Wang J F, Lin L, He D N. Materials Review,2018,32(z2),102(in Chinese).
王敬锋,林琳,何丹农.材料导报,2018,32(专辑32),102.
8 Xiong W. Study on preparation of graphene powder and graphene aqueous dispersion. Master's Thesis, Shenzhen University, China,2017(in Chinese).
熊威.石墨烯粉体及石墨烯水分散液的制备研究.硕士学位论文,深圳大学,2017.
9 Gong S S, Guang S Y, Ke F Y, et al. China Measurement & Testing Technology,2016,42(4),38(in Chinese).
龚水水,光善仪,柯福佑,等.中国测试,2016,42(4),38.
10 Peng L Q, Xie J H, Guo C, et al. Journal of Functional Materials,2013,44(21),3055(in Chinese).
彭黎琼,谢金花,郭超,等.功能材料,2013,44(21),3055.
11 Gallerneault M, Truica-Marasescu F, Docoslis A. Surface and Coatings Technology,2018,334,196.
12 Ferrari A C, Meyer J C, Scardaci V, et al. Physical Review Letters,2006,97(18),187401.
13 Hao H H, Liu J B, Li K W, et al. Journal of Materials Engineering,2018,46(5),1(in Chinese).
郝欢欢,刘晶冰,李坤威,等.材料工程,2018,46(5),1.
14 Zhao H L, Cai W H, Wang L, et al. Journal of Yanshan University,2018,42(5),377(in Chinese).
赵洪力,蔡文豪,王丽,等.燕山大学学报,2018,42(5),377.
15 Das A, Chakraborty B, Sood A K. Bulletin of Materials Science,2008,31(3),579.
16 Zhang L T, Bao J N, Li L, et al. Dyestuffs and Coloration,2017,54(5),44(in Chinese).
张丽婷,鲍建楠,李琳,等.染料与染色,2017,54(5),44.
17 Ma Z M, Xiao R G, Liao X, et al. Materials Review A: Review Papers,2018,32(10),3325(in Chinese).
马志鸣,肖仁贵,廖霞,等.材料导报:综述篇,2018,32(10),3325.
18 Li Q Y, Zhang Z J, Hu L N, et al. Mining and Metallurgical Enginee-ring,2017,37(6),142(in Chinese).
李庆余,张志杰,胡丽娜,等.矿冶工程,2017,37(6),142.
19 Nan W Z, Yan S J, Peng S K, et al. Journal of Materials Engineering,2018,46(4),43(in Chinese).
南文争,燕绍九,彭思侃,等.材料工程,2018,46(4),43.
20 Lv L, Hong J H, He G, et al. Battery Bimonthly,2012,42(4),225(in Chinese).
吕璐,洪建和,何岗,等.电池,2012,42(4),225.
21 Yuan G H, Bai J T, The Nam Long Doan, et al. Materials Letters,2015,158,248.
22 Bi H, Huang F Q, Tang Y F, et al. Electrochimica Acta,2013,88(Complete),414.
23 He X Z, Hu Y, Deng Z D, et al. Electronic Components and Materials,2016,35(11),77(in Chinese).
何湘柱,胡燚,邓忠德,等.电子元件与材料,2016,35(11),77.
24 Yang J L, Wang J J, Tang Y J, et al. Energy & Environmental Science,2013,6(5),1521.
25 Li C L, Xie Y C, Zhang N S, et al. Ionics,2019,25,927.
26 Zhang Y Y, Li Y L, Xu M, et al. Journal of Functional Materials,2019,50(8),8217(in Chinese).
张阳阳,李亚兰,许民,等.功能材料,2019,50(8),8217.
27 Huet F. Journal of Power Sources,1998,70(1),59.
28 Zhang W H, Wu S M, Liu P, et al. Chinese Journal of Power Sources,2015,39(9),1838(in Chinese).
张文华,吴三毛,刘平,等.电源技术,2015,39(9),1838.
29 Chang Q M, Li Y, Bai L Z. Journal of Functional Materials,2019,50(5),5204(in Chinese).
常琦敏,李颖,白利忠.功能材料,2019,50(5),5204.
30 Ke D, Lv W, Su F Y, et al. Carbon,2015,92,311.
[1] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[2] 程正富, 周明军, 杨邦朝, 郑瑞伦. 石墨烯热学性能非简谐效应的研究进展[J]. 材料导报, 2020, 34(9): 9095-9100.
[3] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[4] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[5] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[6] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
[7] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[8] 许壮, 高召顺, 韩立, 左婷婷, 伍岳, 肖立业, 孔祥东. 电子束热处理快速制备石墨烯技术[J]. 材料导报, 2020, 34(6): 6006-6009.
[9] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[10] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[11] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[12] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[13] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[14] 朱武青, 全海燕, 彭叔森, 张敏, 陈东初, 户华文. 基于天然贻贝仿生制备聚多巴胺改性石墨烯基功能材料及其水体环境修复应用研究进展[J]. 材料导报, 2020, 34(11): 11009-11021.
[15] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed