Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7036-7044    https://doi.org/10.11896/cldb.19040193
  无机非金属及其复合材料 |
宽温型锂离子电池有机电解液的研究进展
浦文婧1,2, 芦伟1, 谢凯3, 郑春满3
1 安徽大学物质科学与信息技术研究院,合肥 230601;
2 陆军炮兵防空兵学院应用物理研究所,合肥 230031;
3 国防科技大学空天科学与工程学院,长沙 410073
Progress on the Carbonate-based Electrolyte Designed for Lithium-ion Batteries with Wide Operating Temperature Range
PU Wenjing1,2, LU Wei1, XIE Kai3, ZHENG Chunman3
1 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
2 Institute of Applied Physics, Army Academy of Artillery & Air Defense, Hefei 230031, China;
3 Institute of College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 2091KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池的使用领域明显受工作温度范围的限制。消费级电子设备要求的工作温度通常在-20~60 ℃,基本与常规锂离子电池极限工作温度一致;然而,为了适应地域和季节温度差异,电动汽车的动力电源通常需要长期在-30~70 ℃的温度范围内工作;宇航/军事装备需要更强的适应性,要求搭载的电池系统具备更宽的工作温度范围,特别是低温极限拓展至-50 ℃以下。目前锂离子电池显然难以在如此宽的温度范围内长时间、高性能地工作,因此宽温型锂离子电池成为研究开发的热点之一。
   宽温性能同时需要兼顾电池的高温和低温两方面的性能。文献表明,低温的主要问题是锂离子的扩散,为可逆过程,对原有电池组成和结构不造成显著破坏;高温的主要问题是电解液的分解和电解液与正极、负极间的表面化学钝化机制的丧失,为不可逆过程,导致电池循环充放电容量迅速衰减。
   碳酸酯基电解液的优化设计成为现阶段拓宽锂离子电池工作温度范围最可行、最经济的途径。宽温电解液的设计和研究涉及到电解液的溶剂化结构、电解液与负极以及电解液与正极的表面化学反应三方面的问题。其中,具有较宽的液态温度范围、较高的电化学稳定性和低温离子电导率是电解液液相的必要条件;而电解液|电极界面成分与结构是维持锂离子和电荷的交换、增强电解液与电极材料相容性的关键因素。液相改性主要通过采用新型电解质锂盐和使用具有较宽液态范围的共溶剂来实现,界面的改性主要通过向电解液中加入界面成膜添加剂和高温添加剂来实现。
   本文基于笔者课题组在电解液宽温化改性方面的工作,综述了近些年来宽温电解液的相关研究和探索方面的成果,介绍了最近报道的新型电解质锂盐、共溶剂和功能性添加剂的结构、性能及作用机理,并展望了宽温电解液研究的未来发展方向及研究方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
浦文婧
芦伟
谢凯
郑春满
关键词:  锂离子电池  电解液  宽使用温度  氟代酯  有机硅添加剂    
Abstract: Today the application of lithium-ion batteries (LIBs) is significantly limited by the operating temperature range. The operating temperature required for consumer electronic devices is usually -20—60 ℃, which is basically consistent with operating temperature of the available conventional lithium ion batteries. To adapt to regional and seasonal temperature differences of electric vehicles/hybrid electric vehicle, LIBs are idea-lly required to show high energy density similar to that at room temperature and maintain an excellent cycling performance from -30—70 ℃. To enhance the survival ability and adaptability, LIBs for certain military and space applications need much stricter requirement on wide temperature range. Especially, the low temperature limit should be lower than -50 ℃. Available LIBs are obviously difficult to work in such a wide temperature range for a long time, so LIBs with wide operating temperature have been attracted more attention in recent years.
Wide operating properties should be simultaneously considered at both low and elevated temperature. The main problem at low temperature is the diffusion of lithium ion, which is a reversible process but does not cause significant damage to the composition and structure of original batte-ry. However, the main problems of elevated temperature are the decomposition of electrolyte and the chemical passivation loss of interfaces between electrolyte and positive / negative electrode. The irreversible process leads to the rapid decrease of discharge capacity and cycling perfor-mance.
At present, electrolyte optimization is the most feasible and economical way to broaden the operating temperature range. The design and pro-perties studies of wide temperature electrolyte involve three aspects: the solvation of electrolyte, the surface chemical reaction between electrolyte and negative electrode, and the interface reaction on positive electrode. Liquid phase of electrolyte is basically required the wide range of liquid temperature, the high electrochemical stability and the ionic conductivity at low temperature. The interface composition and structure are the key factors to exchange the charges/lithium ions, and maintain the compatibility between electrolyte and electrode. Liquid phase modification is mainly realized through the use of new lithium salts and new wide temperature co-solvents, while interface modification is mainly carried out by the addition of interface film additives and high-temperature additives.
In this paper, based on the studies of author and teammates, lots of research and exploration results on the electrolyte for wide temperature are reviewed. Novel lithium salts, co-solvents and functional additives reported in recent years are focused on their structures, properties and action mechanism. At the end, future prospect and research methods are given for lithium-ion battery electrolytes adapted wide operating temperature range.
Key words:  lithium-ion battery    electrolyte    wide operating temperature    fluorinated ester    silicone additive
                    发布日期:  2020-04-10
ZTFLH:  TM911  
基金资助: 安徽省自然科学基金(1708085QB32);国家自然科学基金(51576208;11505290)
通讯作者:  weilu0818@ahu.edu.cn   
作者简介:  浦文婧,2015年12月毕业于国防科技大学材料科学与工程专业,获得工学博士学位,主要研究方向为聚硅烷基功能高分子。现任陆军炮兵防空兵学院应用物理研究所讲师,与安徽大学物质科学与信息技术研究院合作进行聚合物基锂离子电池电解质的研究,目前发表SCI论文4篇,申请国家发明专利3项。
芦伟,2008年6月于国防科技大学应用化学专业获得学士学位,2010年12月和2015年6月于国防科技大学材料科学与工程专业分别获得硕士和博士学位。现任安徽大学物质科学与信息技术研究院讲师,主要研究方向为锂离子电池正负极材料、电解质及电池设计与制备。目前以第一作者发表SCI论文12篇(中科院分区1区论文5篇),申请国家发明专利4项。
引用本文:    
浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
PU Wenjing, LU Wei, XIE Kai, ZHENG Chunman. Progress on the Carbonate-based Electrolyte Designed for Lithium-ion Batteries with Wide Operating Temperature Range. Materials Reports, 2020, 34(7): 7036-7044.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040193  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7036
1 Chen N, Zhang H, Li L, et al. Advanced Energy Materials, 2018, 8(12), 1702675.
2 Abe Y, Kumagai S. Journal of Energy Storage, 2018, 19, 96.
3 Tsuda T, Ando N, Matsubara K, et al. Electrochimica Acta, 2018, 291, 267.
4 Chen L, Fan X, Hu E, et al. Chem, 2019,5(4),896.
5 Xu K. Chemical Review, 2014, 114(23), 11503.
6 Logan E R, Tonita E M, Gering K L, et al. Journal of the Electrochemical Society, 2018, 165(3), A705.
7 Richardson G, Foster J M, Sethurajan A K, et al. Journal of the Electrochemical Society, 2018, 165(9), H561.
8 Gowda S R, Gallagher K G, Croy J R, et al. Physical Chemistry Chemical Physics, 2014, 16, 6898.
9 Li L, Basu S, Wang Y, et al. Science, 2018, 359, 1513.
10 Lee D J, Im D, Ryu Y, et al. Journal of Power Sources, 2013, 243, 831.
11 Shimoda K, Murakami M, Takamatsu D, et al. Electrochimica Acta, 2013, 108, 343.
12 Wu B, Ren Y, Mu D, et al. International Journal of Electrochemical Scie-nce, 2013, 8, 8502.
13 Ji Y, Zhang Y, Wang C. Journal of the Electrochemical Society, 2013, 160(4), A636.
14 Nguyen C C, Lucht B L. Journal of the Electrochemical Society, 2018, 165(10), A2154.
15 Lu W, Xie K, Chen Z, et al. Journal of Power Sources, 2015, 274, 676.
16 Lu W, Xiong S, Xie K, et al. Ionics, 2016, 22(11), 2095.
17 Huang S, Cheong L, Wang D, et al. Applied Surface Science, 2018, 454, 61.
18 Lu W, Xiong S, Pu W, et al. ChemElectroChem, 2017, 4, 2012.
19 Fan L, Wei S, Li S, et al. Advanced Energy Materials, 2018, 8(11), 1702657.
20 Arturtron, Nosenko A, Park Y D, et al. Journal of Solid State Chemistry, 2018, 258, 467.
21 Liu Y, Xie K, Pan Y, et al. Ionics, 2018, 24, 723.
22 Chen S, Zheng J, Mei D, et al. Advanced Materials, 2018, 30(21), 1706102.
23 Xia L, Yu L, Hu D, et al. Acta Chimica Sinica, 2017, 75(12), 1183(in Chinese).
夏兰, 余林颇, 胡笛, 等. 化学学报, 2017, 75(12), 1183.
24 Deng B, Sun D, Wan Q, et al. Acta Chimica Sinica, 2018, 76(4), 259(in Chinese).
邓邦为, 孙大明, 万琦, 等. 化学学报, 2018, 76(4), 259.
25 Ue M. Electrolytes: Nonaqueous. Secondary Batteries-Lithium Rechar-geable Systems, Elsevier B.V. Netherlands, 2009, pp. 72.
26 Aravindan V, Gnanaraj J, Madhavi S, et al. Chemical European Journal, 2011, 17, 14326.
27 Kita F, Sakata H, Sinomoto S, et al. Journal of Power Sources, 2000, 90, 27.
28 Edmana L, Doeff M M, Ferryb A, et al. Journal of Physical Chemistry B, 2000, 104(15), 3476.
29 Xue Z, Chen C. Progress in Chemistry,2005, 17(3), 399(in Chinese).
薛照明, 陈春华. 化学进展, 2005, 17(3), 399.
30 Campion C L, Li W, Lucht B L. Journal of the Electrochemical Society, 2005, 152(12), A2327.
31 Douceya L, Revault M, Lautié A, et al. Electrochimica Acta, 1999, 44, 2371.
32 Kondo K, Sano M, Hiwara A, et al. Journal of Physical Chemistry B, 2000, 104, 5040.
33 Muhuri P K, Das B, Hazra D K. Journal of Physical Chemistry B, 1997, 101, 3329.
34 Jin Z, Xie K, Hong X. Acta Chimica Sinica,2014, 72, 11(in Chinese).
金朝庆, 谢凯, 洪晓斌. 化学学报, 2014, 72, 11.
35 Diao Y, Xie K, Hong X, et al. Acta Chimica Sinica 2013, 71, 508(in Chinese).
刁岩, 谢凯, 洪晓斌, 等. 化学学报, 2013, 71, 508.
36 Xu K. Electrolytes: Overview. Secondary batteries-lithium rechargeable systems, Elsevier B.V., Netherlands, 2009, pp. 51.
37 Salomon M. Non-Aqueous. Electrolytes, Elsevier B.V., Netherlands, 2009, pp. 160.
38 Kurzweil P, Brandt K. Overview. Secondary batteries-lithium rechargeable systems, Elsevier B.V., Netherlands, 2009, pp. 1.
39 Xu K. Chemical Review, 2004, 104, 4303.
40 Herreyre S, Huchet O, Barusseau S, et al. Journal of Power Sources, 2001, 97-98, 576.
41 Ein-Eli Y, Thomas S R, Chadha R, et al. Journal of the Electrochemical Society, 1997, 144(3), 283.
42 Logan E R, Tonita E M, Gering K L, et al. Journal of the Electrochemical Society, 2018, 165(2), A21.
43 Smart M C, Ratnakumar B V, Ryan-Mowrey V S, et al. Journal of Power Sources, 2003, 119-121, 359.
44 Yamaki J, Yamazaki I, Egashira M, et al. Journal of Power Sources, 2001, 102, 288.
45 Sato K, Zhao L, Okada S, et al. Journal of Power Sources, 2011, 196, 5617.
46 Sato K, Yamazaki I, Okada S, et al. Solid State Ionics, 2002, 148, 463.
47 Satoh T, Nambu N, Takehar M, et al. ECS Transactions, 2013, 50(48), 127.
48 Nishikawa D, Nakajima T, Ohzawa Y, et al. Journal of Power Sources, 2013, 243, 573.
49 Ihar M, Hang B T, Sato K, et al. Journal of the Electrochemical Society, 2003, 150(11), A1476.
50 Matsuda Y, Nakajima T, Ohzawa Y, et al. Journal of Fluorine Chemistry, 2011, 132(12), 1174.
51 Nakajima T, Dan K, Koh M. Journal of Fluorine Chemistry, 1998, 87, 221.
52 Smith K A, Smart M C, Prakash G K S, et al. ECS Transactions, 2008, 11(29), 91.
53 Mcmillan R, Slegr H, Shu Z X, et al. Journal of Power Sources, 1999, 81-82, 20.
54 Möller K C, Hodal T, Appel W K, et al. Journal of Power Sources, 2001, 97-98, 595.
55 Lu W, Xie K, Chen Z, et al. Journal of Fluorine Chemistry, 2014, 161, 110.
56 Lu W, Xie K, Pan Y, et al. Journal of Fluorine Chemistry, 2013, 156, 136.
57 Xu J, Yao W, Yao Y, et al. Acta Physico-Chimica Sinica, 2009, 25(2), 201(in Chinese).
许杰, 姚万浩, 姚宜稳, 等. 物理化学学报, 2009, 25(2), 201.
58 Zhang S S. Journal of Power Sources, 2006, 162, 1379.
59 Li J, Li H, Stone W, et al. Journal of the Electrochemical Society, 2018, 165(3), A626.
60 Zhang S S, Xu K, Jow T R. Journal of Power Sources, 2003, 115(1), 137.
61 Luo X. Journal of Alloys and Compounds, 2018, 730, 23.
62 Seki S, Takei K, Miyashiro H, et al. Journal of Electrochemistry Society, 2011, 158(6), A769.
63 Ryou M, Lee J, Lee D J, et al. Electrochimica Acta, 2013, 102, 97.
64 Wu B, Pei F, Yuewu, et al. Journal of Power Sources, 2013, 227, 106.
65 Zeng Z, Jiang X, Wu B, et al. Electrochimica Acta, 2014, 129, 300.
66 Liu J, Song X, Zhou L, et al. Nano Energy, 2018, 46, 404.
67 Takeuchi S, Fukutsuka T, Miyazaki K, et al. Journal of Power Source, 2013, 238, 65.
68 Markovsky B, Rodkin A, Cohen Y S, et al. Journal of Power Sources, 2003, 119-121, 504.
69 Markovsky B, Nimberger A, Talyosef Y, et al. Journal of Power Sources, 2004, 136, 296.
70 Aurbach D, Talyosef Y, Markovsky B, et al. Electrochimica Acta, 2004, 50, 247.
71 Guo A, Feng S, Mi Y, et al. Applied Mechanics and Materials, 2013, 327, 128.
72 Aurbach D, Gnanaraj J S, Geissler W, et al. Journal of Electrochemistry Society, 2004, 151(1), A23.
73 Li X, Xue Z, Zhao J, et al. Journal of Power Sources, 2013, 235, 274.
74 Zhang S S. Electrochemistry Communications, 2006, 8, 1423.
75 Zhou H, Liu F, Li J, et al. Journal of Inorganic Materials 2013, 28(5), 507(in Chinese).
周宏明, 刘芙蓉, 李荐, 等. 无机材料学报, 2013, 28(5), 507.
76 Zhou H, Fang Z, Li J. Journal of Power Sources, 2013, 230, 148.
77 Schedlbauer T, Rodehorst U C, Schreiner C, et al. Electrochimica Acta, 2013, 107, 26.
78 Li S, Zhao W, Zhao Y, et al. RSC Advance, 2013, 3(35), 14942.
79 Li B, Zhao W, Cui X, et al. Electrochimica Acta, 2014, 129, 327.
80 Smart M C, Ratnakumar B V, Whitacre J F, et al. Journal of Electrochemistry Society, 2005, 152(6), A1096.
81 Smart M C, Ratnakumar B V, Surampudi S. Journal of Electrochemistry Society, 1999, 146(2), 486.
82 Plichta E J, Behl W K. Journal of Power Sources, 2000, 88, 192.
83 Plichta E J, Hendrickson M, Thompson R, et al. Journal of Power Sources, 2001, 94, 160.
84 Smart M C, Ratnakumar B V, Whitcanack L D, et al. Journal of Power Sources, 2003, 119-121, 349.
85 Matsuoka O, Hiwara A, Omi T, et al. Journal of Power Sources, 2002, 108, 128.
86 Shu Z X, Mcmillan R S, Murray J J, et al. Journal of Electrochemistry Society, 1995, 142(9), L161.
87 Shu Z X, Mcmillan R S, Murray J J, et al. Journal of Electrochemistry Society, 1996, 143(7), 2230.
88 Nie M, Abraham D P, Chen Y, et al. Journal of Physical Chemistry C, 2013, 117, 13403.
89 Contestabile M, Morselli M, Paraventi R, et al. Journal of Power Sources, 2003, 119-121, 943.
90 Aurbach D, Gamolsky K, Markovsky, et al. Electrochimica Acta, 2002, 47, 1423.
91 Nakahara H, Yoon S, Nutt S. Journal of Power Sources, 2006, 160, 548.
92 Aurbach D. Journal of Power Sources, 2005, 146, 71.
93 Takeuchi T, Noguchi S, Morimoto H, et al. Journal of Power Sources, 2010, 195, 580.
94 Pu W, Li X, Li G, et al. Polymer Bulletin, 2015, 72(4), 779.
95 Pu W, Wang C, Hu T, et al. Acta Polymerica Sinica, 2015(7), 742(in Chinese).
浦文婧, 王春宇, 胡天娇, 等. 高分子学报, 2015(7), 742.
96 郑春满, 李山河, 芦伟, 等. 中国专利,专利ZL201410782778.2, 2017.
[1] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[2] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[3] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[4] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[5] 杨果, 马壮, 杨绍斌, 董伟, 沈丁. 低比表面积酚醛树脂硬碳的制备及电化学性能[J]. 材料导报, 2019, 33(22): 3820-3824.
[6] 田柳文, 于华, 章文峰, 陈涛, 黄跃龙, 郑先峰. 锂离子电池的明星材料磷酸铁锂:基本性能、优化改性及未来展望[J]. 材料导报, 2019, 33(21): 3561-3579.
[7] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[8] 李灵桐, 臧晓蓓, 曹宁. 锌锰二次电池研究进展[J]. 材料导报, 2019, 33(19): 3210-3218.
[9] 程成, 肖方明, 王英, 唐仁衡, 裴和中. 基于石墨烯改性的Fe-Si@C/石墨烯复合负极材料[J]. 材料导报, 2019, 33(18): 3005-3011.
[10] 王英, 阮威, 唐仁衡, 肖方明, 孙泰, 黄玲. 不同粒径纳米硅制备Si@C/石墨负极材料及其电化学性能[J]. 材料导报, 2019, 33(18): 3021-3025.
[11] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[12] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[13] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[14] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[15] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed