Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3210-3218    https://doi.org/10.11896/cldb.18080017
  无机非金属及其复合材料 |
锌锰二次电池研究进展
李灵桐, 臧晓蓓, 曹宁
中国石油大学(华东)材料科学与工程学院,青岛 266580
Recent Progress of Rechargeable Zinc-Manganese Dioxide Batteries
LI Lingtong, ZANG Xiaobei, CAO Ning
College of Materials Science and Engineering, China University of Petroleum, Qingdao 266580
下载:  全 文 ( PDF ) ( 2859KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着能源供给与环境保护之间的矛盾日益尖锐,开发可再生、环境友好的新型绿色能源具有重要的意义。绿色能源多数具有时效性或地域局限性,需配备储能元件。二次电池作为重要的能源存储器件,已遍布生活的各个方面。其中,由金属锌(Zn)为负极、二氧化锰(MnO2)为正极、水系溶液为电解液组成的锌锰二次电池具有原材料资源丰富、绿色环保、成本低廉、理论容量高等优点,被认为是当前极具研究前景的高性能二次电池之一。
MnO2是一种金属氧化物,属于半导体材料,为离子电池中常见的正极材料,但是其导电性较差(电导率为10-5~10-6 S·cm-1),在充放电过程中存在较大的体积膨胀和收缩,并且易生成电化学惰性的低价锰氧化物,致使正极材料结构破坏,活性物质量降低,从而影响电池的电化学性能。同时,Zn负极热力学性质不稳定,易发生变形、枝晶、钝化、腐蚀问题,使Zn负极利用率降低或者电池短路。因此,锌锰二次电池的循环寿命、倍率性能和库伦效率等电化学性能仍难以满足实际应用需求。迄今为止,关于锌锰二次电池的研究工作,主要集中于通过改善正、负极活性材料、调整电解液成分、改进电池结构以提高电化学性能和扩大电池应用范围及储能机制的探索。
相关研究表明,通过以下方法可以有效解决上述问题:(1)正极材料中,精细MnO2结构和复合掺杂改性可大大提高正极材料的电化学活性和导电性,进而获得较高的放电比容量;(2)负极材料中,通过掺杂可以有效地减少锌极的变形、枝晶、钝化、腐蚀问题的发生;(3)电解液中,温和的含Zn2+和Mn2+的中性盐溶液可同时应用于传统锌锰二次电池和柔性锌锰二次电池中,添加剂的掺入能有效抑制锌负极的腐蚀、枝晶、钝化,从而延长电池使用寿命;(4)电池结构上,通过改善电极活性物质、电解质及组装工艺获得不同形状的柔性锌锰二次电池,可更好地适用于狭窄和异形空间,大大拓宽电池的使用范围。
本文从锌锰二次电池的工作原理出发,总结正负极活性物质、电解液、电池结构等方面的研究进展及研发过程中存在的主要问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李灵桐
臧晓蓓
曹宁
关键词:  锌锰二次电池  电极材料  电解液  柔性电池    
Abstract: As the conflict between energy supply and environmental protection becomes increasingly acute, it is of great significance to develop new, renewable and green energy. Rechargeable batteries, as a kind of environmental-friendly energy storage device, have been widely used in many fields. Rechargeable zinc-manganese dioxide batteries consisting of zinc (Zn) as anode, manganese dioxide (MnO2) as cathode, and potassium hydroxide (KOH) solution as electrolyte, have many advantages such as abundant raw material resources, environmental friendliness, cost effectiveness and high theoretical capacity. Therefore, it is considered to be one of the most promising high-performance rechargeable batte-ries.
MnO2 is a kind of semiconductor with poor conductivity (electrical conductivity is 10-5—10-6 S/cm) and poor cyclic stability, because the ca-thode structure and the amount of active material could be damaged by the volume change and the dissolution of trivalent manganese ions. Besides, the thermodynamic properties of Zn anode are unstable, including vulnerability to deformation, dendrites, passivation, and corrosion. As a result, the utilization of the Zn electrode is reduced and the short circuit of the battery is brought about. Therefore, the electrochemical perfor-mance of rechargeable zinc-manganese dioxide batteries hampers its widespread application, including poor cycle life, low rate performance and low coulombic efficiency. So far, most researches focused on improving the electrochemical performance and expanding the application range of rechargeable zinc-manganese dioxide batteries by optimizing the property of electrode materials, the composition of the electrolyte, and the structure of batteries.
It has been demonstrated that the problems existing in rechargeable zinc-manganese dioxide batteries can be effectively solved by the following methods: (1) about the cathode material, the nanonization of MnO2 and the compounding and the doping with materials of good conductivity can greatly increase the specific surface area and conductivity of the cathode material, and raise discharge capacity; (2) about the anode material, the deformation caused by zinc dendrites or corrosion can be reduced by doping; (3) about the electrolyte, mild salt solution containing Zn2+ and Mn2+ can be simultaneously applied in both traditional and flexible zinc-manganese dioxide batteries, and the incorporation of additives can effectively inhibit the corrosion, dendrites, passivation problems of Zn anode, thereby prolonging cycle life of batteries; (4) about the structure, flexible rechargeable zinc-manganese dioxide batteries with different structures are assembled on the basis of the improved electrode materials and electrolyte, which can be better applied in narrow and shaped spaces, greatly broadening the use of rechargeable zinc-manganese dioxide batteries.
In this review, the main problems have been summarized based on the working principle of rechargeable zinc-manganese dioxide batteries. And recent research progress has been reviewed from the perspectives of electrode materials, electrolyte and flexible design. Meanwhile, this paper also gives brief suggestions and outlooks on the future research directions in rechargeable zinc-manganese dioxide batteries.
Key words:  rechargeable zinc-manganese dioxide batteries    electrode materials    electrolyte    flexible battery
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  TM911  
基金资助: 中央高校基本科研业务费专项资金资助(18CX02158A;17CX02063);青岛市应用基础研究计划(16-5-1-84-jch);山东省重点研发计划项目(2017GGX20123)
作者简介:  李灵桐,2017年6月毕业于烟台大学,获得工学学士学位。现为中国石油大学(华东)材料科学与工程学院硕士研究生。目前主要从事柔性可充锌锰电池的研究。曹宁,中国石油大学(华东)材料科学与工程学院副教授、硕士研究生导师。2010年7月于山东大学材料学专业取得博士学位。 2015年前往法国国家科学研究中心IEMN研究所进行了访问一年。现主要从事新型炭材料及其功能化器件的研究工作。近年来发表论文20余篇,包括Progress in Organic Coatings、Materials、Chemical Engineering Journal、RSC AdvancesJournal of Nanomaterials等期刊。caoning1982@gmail.com
引用本文:    
李灵桐, 臧晓蓓, 曹宁. 锌锰二次电池研究进展[J]. 材料导报, 2019, 33(19): 3210-3218.
LI Lingtong, ZANG Xiaobei, CAO Ning. Recent Progress of Rechargeable Zinc-Manganese Dioxide Batteries. Materials Reports, 2019, 33(19): 3210-3218.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080017  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3210
1 Shi J J, Guo X, Chen R J, et al. Progress in Chemistry,2016,28(4),577(in Chinese).史菁菁,郭星,陈人杰,等.化学进展,2016,28(4),577.2 Wang P B, Zheng J C. Chinese Journal of Nature,2017,39(4),283(in Chinese).王鹏博,郑俊超.自然杂志,2017,39(4),283.3 Liu Y F, Wang J B, Hu X Y, et al. Value Engineering,2016,35(12),1(in Chinese).刘永飞,王俊勃,胡新煜,等.价值工程,2016,35(12),1.4 Pan J Q, Zhang Y, Sun Y Z, et al. Battery Bimonthly,2008,38(5),325(in Chinese).潘军青,张钰,孙艳芝,等.电池,2008,38(5),325.5 Gao X Y, Yang H X, Lu T H. Alkaline zinc/manganese dioxide battery, Science Press, China,2013(in Chinese).高效岳,杨辉鑫,陆天虹.碱性锌/二氧化锰电池,科学出版社,2013.6 Pan S W, Lin H J, Deng J, et al. Advanced Energy Materials,2015,5(4),1401438.7 Xu C J, Li B H, Du H D, et al. Angewandte Chemie International Edition,2012,51(4),933.8 Kozawa A, Yeager J F. Journal of the Electrochemical Society,1968,115(10),1003.9 Kozawa A, Powers R A. Journal of the Electrochemical Society,1966,113(113),870.10 Gödickemeier M, Sasaki K, Gauckler L J, et al. Journal of the Electrochemical Society,1997,144(5),1635.11 Xu C J, Chiang S W, Ma J, et al. Journal of the Electrochemical Society,2013,160(1),A93.12 Toupin M, Brousse T, Bélanger D. Chemistry of Materials,2004,16(16),3184.13 Toupin M, Brousse T, Bélanger D. Chemistry of Materials,2002,14(9),3946.14 Kuo S L, Wu N L. Logistics Technology,2006,153(7),A1317.15 Song M K, Cheng S, Chen H, et al. Nano Letters,2012,12(7),3483.16 Wang J G. Preparation of nanostructured manganese dioxide-based composites and their electrochemical properties. Ph.D. Thesis, Tsinghua University, China,2013(in Chinese).王建淦.纳米二氧化锰基复合材料的制备及其电化学特性研究.博士学位论文,清华大学,2013.17 Xia X. Battery Bimonthly,2004,33(6),411(in Chinese).夏熙.电池,2004,33(6),411.18 Xia X. Battery Bimonthly,2004,35(1),27(in Chinese).夏熙.电池,2004,35(1),27.19 Xia X. Battery Bimonthly,2005,35(2),105(in Chinese).夏熙.电池,2005,35(2),105.20 Xia X. Battery Bimonthly,2005,35(3),199(in Chinese).夏熙.电池,2005,35(3),199.21 Xia X. Battery Bimonthly,2004,35(5),362(in Chinese).夏熙.电池,2004,35(5),362.22 Cheng F, Zhao J, Song W, et al. Inorganic Chemistry,2006,45(5),2038.23 Liu R, Lee S B. Journal of the American Chemical Society,2008,130(10),2942.24 Jiang R, Tao H, Liu J, et al. Electrochimica Acta,2009,54(11),3047.25 Babakhani B, Ivey D G. Journal of Power Sources,2010,195(7),2110.26 Yang Y, Huang C. Journal of Solid State Electrochemistry,2010,14(7),1293.27 Xu F, Wang T, Li W, et al. Chemical Physics Letters,2003,375(1),247.28 Alfaruqi M H, Gim J, Kim S, et al. Electrochemistry Communications,2015,60,121.29 Guo X, Li J, Jin X, et al. Nanomaterials,2018,8(5),301.30 Wei C, Xu C, Li B, et al. Journal of Physics & Chemistry of Solids,2012,73(12),1487.31 Tao Y G, Jin C, Cao N, et al. New Chemical Materials,2013,41(3),122(in Chinese).陶玉贵,金成,曹宁,等.化工新型材料,2013,41(3),122.32 Brennen K R, Fester K E, Owens B B, et al. Journal of Power Sources,1980,5(1),25.33 Zhang Y J, Yan Y X, Zhang J H. Materials Protection,2009,42(8),000056(in Chinese).张英杰,闫宇星,章江洪.材料保护,2009,42(8),000056.34 Wang Q. The synthesis of nano bismuth acid salt as the positive doping agent of alkaline manganese battery. Master’s Thesis,Beijing University of Chemical Technology, China,2007(in Chinese).王倩.纳米铋酸盐的合成及其作为碱锰电池正极掺杂剂的研究.硕士学位论文,北京化工大学,2011.35 Sajdl B, Micka K, Krtil P. Electrochimica Acta,1995,40(12),2005.36 Pan J Q. Study on the nickel oxide and manganese oxide as the cathode materials for rechargeable alkaline batteries. Ph.D. Thesis, Beijing University of Chemical Technology, China,2007(in Chinese).潘军青.基于镍锰氧化物正极材料的碱性二次电池研究.博士学位论文,北京化工大学,2007.37 Xia X, Gong L Y, Li J. Chinese Journal of Applied Chemistry,2001,18(12),953(in Chinese).夏熙,龚良玉,李娟.应用化学,2001,18(12),953.38 Yao H J, Zhang X G, Xia X. Battery Bimonthly,2003,33(1),6(in Chinese). 姚海军,张校刚,夏熙.电池,2003,33(1),6.39 Liu X M, Yao H J, Zhang X G, et al. Acta Chimica Sinica,2003,61(11),1797(in Chinese). 刘献明,姚海军,张校刚,等.化学学报,2003,61(11),1797.40 Liu X M, Yao H J, Zhang X G, et al. Chinese Journal of Inorganic Chemistry,2013,19(3),257(in Chinese).刘献明,姚海军,张校刚,等.无机化学学报,2013,19(3),257.41 Cui J J, Zhang X G, Liu H T. Chinese Journal of Applied Chemistry,2004,21(6),605(in Chinese). 崔静洁,张校刚,刘洪涛.应用化学,2004,21(6),605.42 Yao Y F, Gupta N, Wroblowa H S. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry,1987,223(1),107.43 Qu D. Journal of Applied Electrochemistry,1999,29(4),511.44 Abou-El-Sherbini K S, Askar M H, Schöllhorn R. Solid State Ionics,2001,139(1),121.45 Yadav G G, Gallaway J W, Turney D E, et al. Nature Communications,2017,8,14424.46 Yadav G G, Wei X, Huang J, et al. International Journal of Hydrogen Energy,2018,43(17),8480.47 Minakshi M. Industrial & Engineering Chemistry Research,2011,50(14),8792.48 Chen X, Guo H J, Luo S L, et al. Transactions of Nonferrous Metals So-ciety of China,2017,27(6),1417.49 Tian Z, Tong W, Wang J, et al. Science,1997,276(5314),926.50 Chou L, Liu R, He W, et al. International Journal of Hydrogen Energy,2012,37(10),8889.51 Xu D, Li B, Wei C, et al. Electrochimica Acta,2014,133(7),254.52 Wu B, Zhang G, Yan M, et al. Small,2018,14(13),1703850.53 Jin Y, Chen H, Chen M, et al. Applied Materials & Interfaces,2013,5(8),3408.54 Huang J H, Zhuo W, Hou M Y. Nature Communications,2018,9,2906.55 Ghosh K, Yue C Y, Sk M M. ACS Applied Materials & Interfaces,2017,9(18),15350.56 Sharma R K, Rastogi A C, Desu S B. Electrochim Acta,2008,53,7690.57 Yang S N, Yan P, Li Y J. Electrochim Acta,2015,182,1153.58 Akhtar T, Alam M. Sensor Letters,2014,12(11),1637.59 Hou Y, Cheng Y W, Hobson T, et al. Nano Letters,2010,10(7),2727.60 Pan C, Gu H, Dong L. Journal of Power Sources,2016,303,175.61 Ma J, Zhu S, Shan Q, et al. Electrochimica Acta,2015,168,97.62 Wu Z S, Ren W, Wang D W, et al. ACS Nano,2010,4(10),58352.63 Li J, Cui L, Zhang X G. Applied Surface Science,2010,256(13),4339.64 James M. Power Sources,1994,51(1-2),37.65 Yasuda H, Nakamitsu K. GS News Technical Report,1995,54(1),83.66 Wang J M, Qian Y D, Zhang L, et al. Battery Bimonthly,1999,29(2),76(in Chinese).王建明,钱亚东,张莉,等.电池,1999,29(2),76.67 Sun Y, Zhang B H, Zhang N. Applied Science and Technology,2002,29(2),47(in Chinese). 孙烨,张宝宏,张娜.应用科技,2002,29(2),47.68 Meng X L, Yang H B, Wang J H, et al. Journal of Electrochemistry,2005,11(1),000058(in Chinese). 孟宪玲,杨化滨,王军红,等.电化学,2005,11(1),000058.69 Shivkumar R, Kalaignan G P, Vasudevan T, et al. Journal of Power Sources,1998,75(1),90.70 Zhao K N, Wang C X, Yu Y H, et al. Advanced Materials Interfaces,2018,5(16),1800848.71 Lang J S, Fu Q. Marine Electric & Electronic Engineering,2010,30(7),47(in Chinese).郎俊山,付强.船电技术,2010,30(7),47.72 Yu Z R, Zhou Z T. Chinese Journal of Power Sources,2008,32(6),402(in Chinese). 玉正日,周震涛.电源技术,2008,32(6),402.73 Chang W L, Sathiyanarayanan K, Eom S W, et al. Journal of Power Sources,2006,160(1),161.74 Zhang C, Wang J M, Zhang Z, et al. The Chinese Journal of Nonferrous Metals,2001,11(5),780(in Chinese).张春,王建明,张昭,等.中国有色金属学报,2001,11(5),780.75 Hu J W, Gao C Q, Lai L. Battery Bimonthly,2003,33(4),14(in Chinese).胡经纬,高翠琴,赖璐.电池,2003,33(4),14.76 Zhang B, Liu Y, Wu X, et al. Chemical Communications,2014,50(10),1209.77 Pan H L, Shao Y Y, Yan P F, et al. Nature Energy,2016,1,16039.78 Benjamin J, An H, Andrew H, et al. Chemistry of Materials,2016,28(13),4536.79 Xu C, Chiang S W, Ma J, et al. Journal of the Electrochemical Society,2012,160(1),A93.80 Lin S Z, Cai Z X, Wang G S, et al. Journal of Electrochemistry,2009,15(3),264(in Chinese). 林胜舟,蔡增鑫,王贵生,等.电化学,2009,15(3),264.81 Zhang S L, Yu N S, Zeng S, et al. Journal of Materials Chemistry A,2018,6,12237.82 Jia Z, Zhou D R, Zhang C F. Journal of Harbin Institute of Technology,2003,35(11),1344(in Chinese). 贾铮,周德瑞.哈尔滨工业大学学报,2003,35(11),1344.83 Bu X T, Jiang W, Liang G C. Chinese Journal of Power Sources,2006,30(4),290(in Chinese). 卜雪涛,蒋巍,梁广川.电源技术,2006,30(4),290.84 Li H Y, Liu Z, Wang H, et al. Surface Technology,2017,46(8),208(in Chinese). 李海莹,刘峥,王浩,等.表面技术,2017,46(8),208.85 Deyab M A. Journal of Power Sources,2015,292,66.86 Li G W, Zhang Y C, Ci S, et al. Energy Storage Science and Technology,2017,6(1),52(in Chinese). 刘冠伟,张亦弛,慈松,等.储能科学与技术,2017,6(1),52.87 Li H, Lu Y C. Journal of Electrochemistry,2015,21(5),412(in Chinese). 李泓,吕迎春.电化学,2015,21(5),412.88 Yu X, Fu Y, Cai X, et al. Nano Energy,2013,2(6),1242.89 Lao-Atiman W, Julaphatachote T, Boonmongkolras P, et al. Journal of the Electrochemical Society,2017,164(4),A859.90 He Y, Chen W, Li X, et al. ACS Nano,2013,7(1),174.91 Wang K, Zhang X H, Han J W, et al. ACS Applied Materials & Interface,2018,10(29),24573.92 Zhu H W, Ge J, Peng Y C, et al. Nano Research,2018,11(3),1.93 Fu Q, Sun X G, Yao J, et al. Modern Chemical Industry,2014,34(9),72(in Chinese). 付琦,孙晓刚,姚军,等.现代化工,2014,34(9),72.94 Zeng Y X, Zhang X Y, Meng Y, et al. Advanced Materials,2017,29(26),1700274.95 Hiralal P, Imaizumi S, Unalan H E, et al. ACS Nano,2010,4(5),2730.96 Li X, Zang X B, Li Z, et al. Advanced Functional Materials,2013,23(38),4862.97 Zang X B, Xu R, Zhang Y, et al. Nanotechnology,2015,26(4),045401.98 Le V T, Kim H, Ghosh A, et al. ACS Nano,2013,7(7),5940.
[1] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[2] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[3] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[4] 苏婷, 宋永辉, 张珊, 田宇红, 兰新哲. 硝酸活化时间对煤基电极材料结构及性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 528-532.
[5] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[6] 黄嘉平, 崔海坡, 宋成利, 周宇. 不同材料对双极高频电刀温度场的影响[J]. 材料导报, 2018, 32(24): 4319-4323.
[7] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[8] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[9] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[10] 谭永涛, 孔令斌, 康龙, 冉奋. Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 《材料导报》期刊社, 2018, 32(1): 47-50.
[11] 梁兴, 高国华, 吴广明. 氧化钒作锂离子电池正极材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 12-33.
[12] 张亚婷, 任绍昭, 党永强, 刘国阳, 李可可, 周安宁, 邱介山. 煤基三维石墨烯基电极在不同电解液中的电化学性能*[J]. 《材料导报》期刊社, 2017, 31(16): 1-5.
[13] 余剑武, 胡其丰, 段文, 何利华, 沈湘. 电加工8418钢的能量分配与表面粗糙度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 153-157.
[14] 何博, 潘宇飞, 陆敏. 石墨烯基储能材料的增材制造研究进展[J]. 《材料导报》期刊社, 2017, 31(13): 126-130.
[15] 卢云, 王伟, 宫岩坤, 沈逸欣, 冯孟杰. 二甲基亚砜对有机电解液锂空气电池性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 1-5.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed