Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 1-5    https://doi.org/10.11896/j.issn.1005-023X.2017.016.001
  材料研究 |
煤基三维石墨烯基电极在不同电解液中的电化学性能*
张亚婷1, 任绍昭1, 党永强1, 刘国阳1, 李可可1, 周安宁1, 邱介山2
1 西安科技大学化学与化工学院, 西安 710054;
2 西安交通大学化学工程与技术学院, 西安 710049
Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes
ZHANG Yating1, REN Shaozhao1, DANG Yongqiang1, LIU Guoyang1, LI Keke1, ZHOU Anning1, QIU Jieshan2
1 College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054;
2 School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049
下载:  全 文 ( PDF ) ( 1936KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 三维石墨烯材料具有独特的多孔网络连通结构,大的比表面积,良好的光、电、热、力学等性质,被认为是理想的电极材料。以廉价煤炭为原料,通过催化热处理、化学氧化及水热还原等技术制得三维煤基石墨烯宏观体;采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、傅里叶红外光谱(FT-IR)和拉曼光谱等检测手段对样品形貌及结构进行表征;并进一步通过恒电流充放电(GCD)、循环伏安(CV)及交流阻抗(EIS)等技术研究了三维石墨烯材料在碱性(6 mol/L KOH)、酸性(1 mol/L H2SO4)及中性(1 mol/L Na2SO4)3种水系电解液中的电化学性能。结果表明,三维煤基石墨烯材料在酸性和碱性电解液中具有较高的比电容;其中,在6 mol/L KOH水系电解液中的比电容高达288.9 F/g,并具有较好的稳定性,充放电循环1 000次后材料的电容保持率为91.6%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张亚婷
任绍昭
党永强
刘国阳
李可可
周安宁
邱介山
关键词:  煤基三维石墨烯  电极材料  电解液  电化学性能  超级电容器    
Abstract: 3D graphene holds promise as electrode materials for electric double layer capacitors due to its unique porous network structure, large specific surface area and excellent optical, electrical, thermal and mechanical properties. In this paper, 3D coal-based graphene (3D-CG) was prepared from coal by a combined technique involving the catalytic thermal treatment, modified Hummers method and one-step hydrothermal self-assembly method. The morphologies and structures of the samples were examined by TEM, SEM, XRD, FT-IR and Raman spectroscopy. Furthermore, the electrochemical properties of 3D-CG materials in 6 mol/L KOH, 1 mol/L H2SO4 and 1 mol/L Na2SO4 electrolyte were systematically studied by galvanostatic charge-discharge (GCD), cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) tests. The results indicated the good capacitive performance and stability of 3D-CG, as the specific capacitance was 288.9 F/g in 6 mol/L KOH aqueous electrolyte, with a high retention ratio of 91.6% even after 1 000 cycles.
Key words:  3D coal-based graphene    electrode material    electrolyte    electrochemical performance    supercapacitor
               出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TB33  
  TQ53  
基金资助: 国家自然科学基金(21276207;U1203292)
作者简介:  张亚婷:女,1972年生,博士,教授,主要研究方向为煤炭洁净利用及煤基炭材料制备与应用 E-mail:isyating@163.com
引用本文:    
张亚婷, 任绍昭, 党永强, 刘国阳, 李可可, 周安宁, 邱介山. 煤基三维石墨烯基电极在不同电解液中的电化学性能*[J]. 《材料导报》期刊社, 2017, 31(16): 1-5.
ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes. Materials Reports, 2017, 31(16): 1-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.001  或          http://www.mater-rep.com/CN/Y2017/V31/I16/1
1 Novoselov K S, Firsov A A. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666.
2 Wan W, Li L, Zhao Z, et al. Graphene oxide: Ultrafast fabrication of covalently cross-linked multifunctional graphene oxide monoliths[J]. Adv Funct Mater,2014,24(31):4915.
3 Wu Z S, Zhou G, Yin L C, et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy,2012,1(1):107.
4 Hu H, Zhao Z, Zhou Q, et al. The role of microwave absorption on formation of graphene from graphite oxide[J]. Carbon,2012,50(9):3267.
5 Vivekchand S R C, Rout C S, Subrahmanyam K S, et al. Graphene-based electrochemical supercapacitors[J]. J Chem Sci,2008,120(1):9.
6 Fu C, Kuang Y, Huang Z, et al. Supercapacitor based on graphene and ionic liquid electrolyte[J]. J Solid State Electrochem,2011,15(11-12):2581.
7 Zhang K, et al. Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes[J]. J Mater Chem,2011,21(20):7302.
8 Ma Y, Chen Y. Three-dimensional graphene networks: Synthesis, properties and applications[J]. National Sci Rev,2015,2(1):40.
9 Nardecchia S, Carriazo D, Ferrer M L, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications[J]. Chem Soc Rev,2013,42(2):794.
10 Zhang Y T, Zhou A N, Zhang X Q, et al. Preparation of the graphene from Taixi anthracite[J]. Coal Convers,2013,36(4):57(in Chinese).
张亚婷, 周安宁, 张晓欠,等. 以太西无烟煤为前驱体制备煤基石墨烯的研究[J]. 煤炭转化,2013,36(4):57.
11 Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. J Chem Phys,2003,53(3):1126.
12 Roldán S, Blanco C, Granda M, et al. Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes[J]. Angew Chem Int Ed,2011,50(7):1699.
13 Wang C, Sun L, Zhou Y, et al. P/N co-doped microporous carbons from H3PO4-doped polyaniline by in situ, activation for supercapacitors[J]. Carbon,2013,59(7):537.
14 Wu H Y, Zhang H Y, Zhang F H, et al. Synthesis of SnO2/RGO/PANI ternary composites and its electrochemical behaviors[J]. Mater Rev:Res,2012,26(11):54(in Chinese).
吴红英, 张海英, 张富海,等. SnO2/还原氧化石墨烯/聚苯胺三元复合物的合成及电化学性能[J]. 材料导报:研究篇,2012,26(11):54.
15 Sun H, et al. Bacteria promoted hierarchical carbon materials for high-performance supercapacitor[J]. Energy Environ Sci,2012,5(3):6206.
16 Niu Z, Luan P, Shao Q, et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polya-niline films for high performance supercapacitor electrodes[J]. Energy Environ Sci,2012,5(9):8726.
17 Ji H, Zhang L, Pettes M T, et al. Ultrathin graphite foam: A three-dimensional conductive network for battery electrodes[J]. Nano Lett,2012,12(5):2446.
18 Liu W W, Feng Y Q, Yan X B, et al. Superior micro-supercapacitors based on graphene quantum dots[J]. Adv Funct Mater,2013,23(33):4111.
19 Trudeau M L, et al. Advanced materials for energy storage[J]. Adv Mater,2010,22(8):28.
20 Chang Z, Wang H W, Hu Z A, et al. Synthesis of graphene with oxygen-containing functional groups via thermal expension and its electrochemical capacitive performances[J]. Mater Rev:Res,2012,26(9):49(in Chinese).
常郑, 王欢文, 胡中爱,等. 热膨胀制备含氧官能团化的石墨烯及其电化学电容性能[J]. 材料导报:研究篇,2012,26(9):49.
21 Huang Z N, Kou S Z, Jin D D, et al. Performance of Ni(OH)2/reduced graphene oxides composites for supercapacitors[J]. J Funct Mater,2015(5):5084(in Chinese).
黄振楠, 寇生中, 金东东,等. 氢氧化镍/还原氧化石墨烯复合物的超级电容性能[J]. 功能材料,2015(5):5084.
22 Dong L, Xu C, Yang Q, et al. High-performance compressible supercapacitors based on functionally synergic multiscale carbon composite textiles[J]. J Mater Chem A,2015,3(8):4729.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[3] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[4] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[5] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[6] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[7] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[8] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[9] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[10] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[11] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[12] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[13] 苏婷, 宋永辉, 张珊, 田宇红, 兰新哲. 硝酸活化时间对煤基电极材料结构及性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 528-532.
[14] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[15] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed