Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 378-383    https://doi.org/10.11896/j.issn.1005-023X.2018.03.006
     材料综述 |
聚吡咯电极材料在超级电容器中的研究进展
张苗苗,刘旭燕,钱炜
上海理工大学机械工程学院,上海 200093
Research Development of Polypyrrole Electrode Materials in Supercapacitors
Miaomiao ZHANG,Xuyan LIU,Wei QIAN
School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093
下载:  全 文 ( PDF ) ( 1303KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

聚吡咯是导电稳定性最好的导电聚合物之一。因其制备方式简单、环境友好、导电率高、电容性好及独特的掺杂性,制备聚吡咯复合材料以提高电极材料的稳定性成为超级电容器导电聚合物基电极材料的热点研究方向。综述了近年来聚吡咯电极材料及其与碳基材料、金属氧化物材料等二元、三元复合电极材料应用于超级电容器中的研究进展,介绍了聚吡咯的电荷储存机制、聚合机理、制备方法等,指出了当前超级电容器聚吡咯及其复合电极材料的热点研究领域,并且展望了其发展前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张苗苗
刘旭燕
钱炜
关键词:  超级电容器  聚吡咯  电极材料    
Abstract: 

Polypyrrole is one of conductive polymers with the best conductive stability. Because of its simple preparation, environmental friendliness, high conductivity, high conductivity and unique doping, the preparation of polypyrrole composites in order to improve the stability is becoming a hot spot in the research field of conductive polymer-based supercapacitors electrode materials. Polypyrrole electrode materials and binary, ternary composite electrode materials with the carbon materials or metal oxide materials used in the research development of supercapacitors in recent years are reviewed. The charge storage mechanism, polypyrrole polymerization mechanism and preparation methods are introduced. Meanwhile, this paper prospected the current hot research fields and development prospect of the polypyrrole and its composite electrode materials.

Key words:  supercapacitors    polypyrrole    electrode material
               出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TM912  
基金资助: 国家自然科学基金青年基金(61504080)
作者简介:  张苗苗:女,1993年生,硕士研究生,研究方向为超级电容器电极材料 E-mail: zhangmiaomiao1219@126.com|刘旭燕:通信作者,女,1981年生,博士,硕士研究生导师,研究方向为新能源器件的开发 E-mail: lxuyan@163.com
引用本文:    
张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors. Materials Reports, 2018, 32(3): 378-383.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.006  或          http://www.mater-rep.com/CN/Y2018/V32/I3/378
图1  聚吡咯的分子结构
图2  PPy的电荷储存机制
图3  聚吡咯的合成机理:(a)阳离子自由基的形成,(b)阳离子自由基结合并释放两个质子,(c)双阳离子自由基的形成,(d、e)链增长
图4  自支撑的PPy纳米管嵌纳米孔阵列材料的制备过程示意图
图5  PPy包覆碳纳米管的PPy/MWNTs复合材料的合成流程
图6  PPy-RGO-fabric复合材料的合成工艺
图7  PPy/HCA的(a)充放电曲线和(b)循环伏安曲线
1 Zhang Hongli, Chen Lijia . Analysis of the development of China’s new energy industry and core technologies[J]. Energy Research and Information, 2013,4(29):187(in Chinese).
1 张宏丽, 陈丽佳 . 我国新能源产业及核心技术发展探析[J]. 能源研究与信息, 2013,4(29):187.
2 Fu Min, Sun Yong, Wang Shuyang . Power system technologies for biomass energy automobiles[J]. Energy Research and Information, 2012,1(28):7(in Chinese).
2 付敏, 孙勇, 王述洋 . 生物质能汽车的动力系统技术[J]. 能源研究与信息, 2012,1(28):7.
3 Yu A, Chen Z . Electrochemical supercapacitors for energy storage and delivery: Advanced materials, technologies and applications[J]. Applied Energy, 2015,153:1.
4 Armand M , TarasconJ M. Building better batteries[J]. Nature, 2008,451:652.
5 Inagaki M, Konno H, Tanaike O . Carbon materials for electroche-mical capacitors[J]. Power Sources, 2010,195(24):7780.
6 Zhao Xue, Qiu Pingda, Jiang Haijing , et al. Latest research progress of electrode materials for supercapacitor[J]. Electronic Components and Materials, 2010,1(34):1(in Chinese).
6 赵雪, 邱平达, 姜海静 . 超级电容器电极材料研究最新进展[J]. 电子元件与材料, 2015,1(34):1.
7 Li Xin, Wei Bingqing . Supercapacitors based on nanostructured carbon[J]. Nano Energy, 2013,2:159.
8 HuangY, Li H, Wang Z , et al. Nanostructured polypyrrole as a flexible electrode material of supercapacitor[J]. Nano Energy, 2016,22:422.
9 Xiao Xingzhong, Yi Qingfeng . Synjournal and electrochemical capacity of MnO2/SMWCNT/PANI ternary composites[J]. Journal of Inorganic Materials, 2013,8(28):825(in Chinese).
9 肖兴中, 易清风 . MnO2/SMWCNT/PANI三元复合材料的合成及其电化学电容性能[J]. 无机材料学报, 2013,8(28):825.
10 Wang G P, Zhang L, Zhang J J . A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012,41(2):797.
11 Yang Peihua, Mai Wenjie . Flexible solid-state electrochemical supercapacitors[J]. Nano Energy, 2014,8:274.
12 Nithya V D, Sabari Arul N . Review on a-Fe2O3 based negative electrode for high performance supercapacitors[J]. Journal of Power Sources, 2016,327:297.
13 Shinde S S, Gund G S, Dubal D P , et al. Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance[J]. Electrochimica Acta, 2014,119:1.
14 Li X, Zhitomirsky I . Electrodeposition of polypyrroleecarbon nanotube composites for electrochemical supercapacitors[J]. Journal of Power Sources, 2013,221:49.
15 Wang Jiangan, Yang Ying, Huang Zhenghong , et al. MnO2/polypyrrole nanotubular composites: Reactive template synjournal, characterization and application as superior electrode materials for high-performance supercapacitors[J]. Electrochimica Acta, 2014,130:642.
16 Feng Huixia, Wang Bin, Tan Lin , et al. Progress in the research on conductive polymer-based electrode materials for supercapacitors[J]. Chemical Industry and Engineering Progress, 2014,3(33):689(in Chinese).
16 冯辉霞, 王滨, 谭琳 , 等. 导电聚合物基超级电容器电极材料研究进展[J]. 化工进展, 2014,3(33):689.
17 Rajkumar M, Hsu C T, Wu T H , et al. Advanced materials for aqueous supercapacitors in the asymmetric design[J]. Progress in Natural Science:Materials International, 2015,25:527.
18 Zhu Lei, Wu Borong, Chen Hui , et al. State of art for study and application of supercapacitor[J]. Chinese Journal of Rare Meterials, 2003,3(27):385(in Chinese).
18 朱磊, 吴伯荣, 陈晖 . 超级电容器研究及其应用[J]. 稀有金属, 2003,3(27):385.
19 Arbizzani C, Mastragostino M, Meneghello L . Polymer-based redox supercapacitors: A comparative study[J]. Electrochimica Acta, 1996,41:21.
20 Mastragostino M, Arbizzani C, Paraventi R , et al. Polymer selection and cell design for electric-vehicle supercapacitors[J]. Journal of the Electrochemical Society, 2000,147(2):407.
21 Clemente A, Panero S, Spila E , et al. Solid-state, polymer-based, redox capacitors[J]. Solid State Ionics, 1996,85:273.
22 Hashmi S A, Upadhyaya H M. Polypyrrole and poly(3-emthylthiophene)-based solid state redox supercapacitors usuing ion conduting polymer electrolyte[J].Solid State Ionics, 2002, 152-153:883.
23 Hyuck Lee, Hyeongkeun Kim, Mi Suk Cho , et al. Fabrication of polypyrrole(PPy)/carbon nanotube(CNT) composite electrode on ceramic fabric for supercapacitor applications[J]. Electrochimica Acta, 2011,56:7460.
24 Zhang Z M, Wan M X, Wei Y . Highly crystalline polyaniline nano-structures doped with dicarboxylic acids[J]. Advanced Functional Materials, 2006,16:1100.
25 Gardini G P . The oxidation of monocyclic pyrroles[J]. Advances in Heterocyclic Chemistry, 1973,15:67.
26 Attia M F, Azib T, Salmi Z , et al. One-step uv-induced modification of cellulose fabrics by polypyrrole/silver nanocomposite films[J]. Journal of Colloid and Interface Science, 2013,393:130.
27 Levi M D, Aurbaeh D . A short review on the strategy towards development of Pi-eonjugated polymers with highly reversible P-and n-doping[J]. Journal of Power Sources, 2008,180(2):902.
28 Zhou H X, Yang L Q, Liu S B . A tale of current and volage interplay of band gap and energy levels of conjugated polymersin bulk heterojunetion solar cells[J]. Macromolecules, 2010,43(24):10390.
29 Ramya R, Sivasubramanian R , Sangaranarayanan M V et al. Conducting polymers-based electrochemical supercapacitors—Progress and prospects[J]. Electrochimica Acta, 2013,101:109.
30 Li Yanxi, Song Hui , Zhang Chengxiang et al. Research progress of polypyrrole and its composite materials[J]. Chemical Propellants & Polymeric Materials, 2016,3(14):19(in Chinese).
30 李廷希, 宋慧, 张成祥 , 等. 聚吡咯及其复合材料的研究进展[J]. 化学推进剂与高分子材料, 2016,3(14):19.
31 Patil B H, Bulakhe R N, Lokhande C D . Supercapacitive perfor-mance of chemically synthesized polypyrrole thin films: Effect of monomer to oxidant ratio[J]. Mater Electron, 2014,25:2188.
32 Hu Xiaoping, Liu Zhihu, You Dan , et al. Progress in preparation, modification and applications of polypyrrole[J]. New Chemical Mate-rials, 2012,7(40):110(in Chinese).
32 胡小平, 刘志虎, 游丹 . 聚吡咯的制备、改性及应用进展[J]. 化工新型材料, 2012,7(40):110.
33 Zhai Jing . Study on Synthesis and capacitance performance of polypyrrole and its composites[D]. Chengdu:Southwest Jiaotong University, 2015(in Chinese).
33 翟晶 . 聚吡咯及其复合材料的制备与电容性能研究[D]. 成都:西南交通大学, 2015.
34 Zhao Junhong, Wu Jinping, Li Bing , et al. Facile synjournal of polypyrrole nanowires for high-performance supercapacitor electrode materials[J]. Progress in Natural Science: Materials International, 2016,26(3):237.
35 Dubal D P, Patil S V, Kim W B , et al. Supercapacitors based on electrochemically deposited polypyrrole nanobricks[J]. Materials Letters, 2011,65:2628.
36 Du Hongxiu . Preparation, structure and electrochemical perfor-mance of polypyrrole nano-arrays[D]. Nanjing:Southeast University, 2015(in Chinese).
36 杜洪秀 . 聚吡咯纳米阵列材料的制备、结构与电化学性能研究[D]. 南京:东南大学, 2015.
37 Wang Xiuyun, Nie Haoyu, Kan Lili , et al. Process of conductive polypyrrole film by in situ polymerization[J]. New Chemical Mate-rials, 2014,11(42):184(in Chinese).
37 王秀昀, 聂浩宇, 阚丽丽 , 等. 聚吡咯导电薄膜原位聚合工艺的研究[J]. 化工新型材料, 2014,11(42):184.
38 Chen Yong, Kang Guiying, Xu Hui , et al. Two composites based on CoMoO4 nanorods and PPy nanoparticles:Fabrication, structure and electrochemical properties[J]. Synthetic Metals, 2016,215:50.
39 Chen S, Zhitomirsky I . Polypyrrole coated carbon nanotubes for supercapacitors, prepared using indigo carmine as a dispersant and dopant[J]. Materials Letters, 2014,135:47.
40 Qian Tao . Preparation and application of novel polypyrrole/carbon nanocomposites[J]. Nanjing: Nanjing University, 2014(in Chinese).
40 钱涛 . 新型聚吡咯/碳纳米管复合材料的制备[D]. 南京:南京大学, 2014.
41 Xu Jie, Wang Daxiang, Yuan Ye , et al. Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application[J]. Organic Electronics, 2015,24:153.
42 Li Y J, Ni X Y, Shen J , et al. Preparation and performance of polypyrrole/nitric acid activated carbon aerogel nanocomposite materials for supercapacitors[J]. Acta Physco-Chimica Sinica, 2016,32(2):493.
43 Sharma R K, Rastogi A C, Desu S B , et al. Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor[J]. Electrochimica Acta, 2006,53(26):7690.
44 Xiong W, Pan X, Li Y , et al. Hierarchical Co3O4@PPy core/shell nanowire arrays on nickel foam for electrochemical energy storage[J]. Materials Letters 2015,157:23.
45 Wu Xinming, Wang Qiguan, Zhang Wenzhi , et al. Nanorod structure of polypyrrole-covered MoO3 for supercapacitors with excellent cycling stability[J]. Materials Letters, 2016,182:121.
[1] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[2] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[3] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[4] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[5] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[6] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[7] 苏婷, 宋永辉, 张珊, 田宇红, 兰新哲. 硝酸活化时间对煤基电极材料结构及性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 528-532.
[8] 黄嘉平, 崔海坡, 宋成利, 周宇. 不同材料对双极高频电刀温度场的影响[J]. 材料导报, 2018, 32(24): 4319-4323.
[9] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[10] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[11] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[12] 肖国庆, 勾黎敏, 丁冬海. 超级电容器用PVDC基碳电极的研究现状/肖国庆等超级电容器用PVDC基碳电极的研究现状[J]. 材料导报, 2018, 32(19): 3309-3317.
[13] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[14] 董文举, 孔令斌, 康龙, 冉奋. 超级电容器电极材料及器件的柔性化与微型化[J]. 材料导报, 2018, 32(17): 2912-2919.
[15] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed