Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 47-50    https://doi.org/10.11896/j.issn.1005-023X.2018.01.005
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能
谭永涛1,2(),孔令斌1,2,康龙1,2,冉奋1,2
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与可再生利用国家重点实验室,兰州 730050
Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance
Yongtao TAN1,2(),Lingbin KONG1,2,Long KANG1,2,Fen RAN1,2
1 College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 650KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 

采用两步化学氧化法,通过控制氧化剂的扩散合成了Nano-Au@PANI复合材料。采用透射电镜对其形貌进行了表征,采用电化学工作站对其电化学性能进行了测试,并研究了反应时间对其电化学性能的影响。结果表明,合成的Nano-Au@PANI复合材料具有蛋黄空心结构,PANI外壳层的厚度随时间的延长而增加,其作为电极材料比容量出现了先增大后减小的趋势。当反应时间为12 h时,其PANI外壳层的厚度约为21 nm,比容量为79 F·g -1

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭永涛
孔令斌
康龙
冉奋
关键词:  复合电极材料  金纳米颗粒  聚苯胺  超级电容器    
Abstract: 

The nano-Au@PANI was prepared via a two-step method of oxidative polymerization by controlling the diffusion of oxidizing agents. The morphology of nano-Au@PANI was characterized by TEM, and the performances of supercapacitor were measured by electrochemical work-station (CHI660E). Furthermore, the relationship of reaction time and the performances of supercapacitor were also studied. The results showed that the nano-Au@PANI composites possessed yolk-shell structure, and with extension of reaction time the specific capacitance first increased and then decreased. When the reaction time was 12 h, the shell thickness of PANI was about 21 nm, the specific capacitance was up to 79 F·g -1.

Key words:  composite electrode material    Au nanoparticle    polyaniline    supercapacitor
               出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TB324  
  TQ316.3  
基金资助: 国家自然科学基金(51203071);博士后科学基金(2014M552509);甘肃省自然科学基金(2015GS05123)
作者简介:  谭永涛:男,1987年生,博士研究生,主要研究方向为超级电容器电极材料 E-mail: tanyongtao1987@163.com
引用本文:    
谭永涛, 孔令斌, 康龙, 冉奋. Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 《材料导报》期刊社, 2018, 32(1): 47-50.
Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance. Materials Reports, 2018, 32(1): 47-50.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.005  或          http://www.mater-rep.com/CN/Y2018/V32/I1/47
图1  Nano-Au@PANI 蛋黄空心结构构筑示意图
图2  (a)Nano-Au, (b)Nano-Au@PANI-6,(c)Nano-Au@PANI-12, (d)Nano-Au@PANI-36和(e)Nano-Au@PANI-48的透射电镜照片
图3  复合材料的电化学性能:(a, b) Nano-Au@PANI-6,(c, d)Nano-Au@PANI-12,(e, f)Nano-Au@PANI-24,(g, h)Nano-Au@PANI-36;(i, j)Nano-Au@PANI-48;(h)复合材料的循环伏安曲线(扫描速率:5 mV·s-1)和(k)交流阻抗曲线(电子版为彩图)
图4  不同电流密度下复合材料的比电容
[1] Simon P, Gogotsi Y . Materials for electrochemical capacitor[J]. Nature Materials, 2008,7(11):845.
[2] Burke A . Ultracapacitors: Why, how, and where is the technology[J]. Journal of Power Sources, 2000,91(1):37.
[3] Zhu Y, Murali S, Stoller M D , et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011,332(6037):1537.
[4] Zhang L L, Zhao X S . Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009,38(9):2520.
[5] Zhi M, Xiang C, Li J , et al. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review[J]. Nanoscale, 2013,5(1):72.
[6] Wang J G, Kang F, Wei B . Engineering of MnO2-based nanocomposites for high-performance supercapacitors[J]. Progress in Materials Science, 2015,74:51.
[7] Snook G A, Kao P, Best A S . Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011,196(1):1.
[8] Kimizuka O, Tanaike O, Yamashita J , et al. Electrochemical doping of pure single-walled carbon nanotubes used as supercapacitor electrodes[J]. Carbon, 2008,46(14):1999.
[9] Xia K, Gao Q, Jiang J , et al. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials[J]. Carbon, 2008,46(13):1718.
[10] EnterriaM, Pereira M F R, Martins J I , et al. Hydrothermal functionalization of ordered mesoporous carbons:The effect of boron on supercapacitor performance[J]. Carbon, 2015,95:72.
[11] LvW, Li Z, Deng Y , et al. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges[J]. Energy Storage Materials, 2016,2:107.
[12] GhoshA, Lee Y H . Carbon-based electrochemical capacitors[J]. ChemSusChem, 2012,5(3):480.
[13] ShanM L, Liu Y J, Li X , et al. KOH-activated carbons used as electrode materials for supercapacitor Material Review A: Review Papers, 2016,30(5):11(in Chinese).
[13] 单明礼, 刘玉静, 李霞 , 等. 氢氧化钾改性碳材料及其在超级电容器中的应用[J]. 材料导报:综述篇, 2016,30(5):11.
[14] FengC C, Wu A M, Huang H . Recent progress of N-doped porous carbon materials with applications to supercapacitor electrode Material Review A: Review Papers, 2016,30(1):143(in Chinese).
[14] 冯晨辰, 吴爱民, 黄昊 . 超级电容器电极用氮-掺杂多孔碳材料的研究进展[J]. 材料导报:综述篇, 2016,30(1):143.
[15] HuangM, Li F, Dong F , et al. MnO2-based nanostructures for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2015,3(43):21380.
[16] SuX H, Yu L, Cheng G . Hydrothermally synthesized manganese dioxide film as supercapacitor electrode Material Review B: Research Papers, 2015,29(5):18(in Chinese).
[16] 苏小辉, 余林, 程高 . 水热合成法制备超级电容器用二氧化锰薄膜电极[J]. 材料导报:研究篇, 2015,29(5):18.
[17] LangJ W, Kong L B, Wu W J , et al. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors[J]. Chemical Communications, 2008,35(35):4213.
[18] KongL B, Zhang J, An J J , et al. MWNTs/PANI composite materials prepared by in-situ chemical oxidative polymerization for supercapacitor electrode[J]. Journal of Materials Science, 2008,43(10):3664.
[19] ZhangJ, Kong L B, Li H , et al. Synjournal of polypyrrole film by pulse galvanostatic method and its application as supercapacitor electrode materials[J]. Journal of Materials Science, 2010,45(7):1947.
[20] BerzinaT, Pucci A, Ruggeri G , et al. Gold nanoparticles-polyaniline composite material:Synjournal, structure and electrical properties[J]. Synthetic Metals, 2011,161(13-14):1408.
[21] HasanM, Ansari M O, Cho M H , et al. Electrical conductivity, optical property and ammonia sensing studies on HCl doped Au@polyaniline nanocomposites[J]. Electronic Materials Letters, 2015,11(1):1.
[22] ZhangL, Peng H, Kilmartin P A , et al. Self-assembled hollow polyaniline/Au nanospheres obtained by a one-step synjournal[J]. Macromolecular Rapid Communications, 2008,29(7):598.
[23] WangX, Shen Y, Xie A , et al. Assembly of dandelion-like Au/PANI nanocomposites and their application as SERS nanosensors[J]. Biosensors & Bioelectronics, 2011,26(6):3063.
[24] SunH, Shen X, Yao L , et al. Measuring the unusually slow ionic diffusion in polyaniline via study of yolk-shell nanostructures[J]. Journal of the American Chemical Society, 2012,134(27):11243.
[25] LangX, Zhang L, Fujita T , et al. Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors[J]. Journal of Power Sources, 2012,197:325.
[26] NobregaM M, Martins V L, Torresi R M , et al. One-step synjournal, characterization, and properties of emeraldine salt nanofibers containing gold[J]. The Journal of Physical Chemistry C, 2014,118(8):4267.
[27] HeJ, Liu Y, Babu T , et al. Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers[J]. Journal of the American Chemical Society, 2012,134(28):11342.
[28] FrensG, , Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature Physical Science, 1973,241(105):20.
[29] HuC C, Lin J Y . Effects of the loading and polymerization temperature on the capacitive performance of polyaniline in NaNO3[J]. Electrochimica Acta, 2002,47(25):4055.
[30] WangY G, Li H Q, Xia Y Y . Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance[J]. Advanced Materials, 2006,18(19):2619.
[1] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[2] 刘钊, 王纪孝, 孙亚伟. 硫酸掺杂聚苯胺涂层的快速表面光热杀菌性能[J]. 材料导报, 2019, 33(14): 2431-2435.
[3] 刘明, 徐洪峰, 周亚男, 郝宇. 金属有机框架化合物Zn4O(BDC)3材料的制备、结构及电容性能[J]. 材料导报, 2019, 33(12): 1955-1958.
[4] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[5] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[6] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[7] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[8] 夏艺萌, 吴帅, 谭丰, 李卫, 魏清茂, 闵春刚, 杨喜昆. 钴盐阴离子基团对Co-N-C催化剂电催化活性的影响[J]. 《材料导报》期刊社, 2018, 32(3): 362-367.
[9] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[10] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[11] 肖国庆, 勾黎敏, 丁冬海. 超级电容器用PVDC基碳电极的研究现状/肖国庆等超级电容器用PVDC基碳电极的研究现状[J]. 材料导报, 2018, 32(19): 3309-3317.
[12] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[13] 董文举, 孔令斌, 康龙, 冉奋. 超级电容器电极材料及器件的柔性化与微型化[J]. 材料导报, 2018, 32(17): 2912-2919.
[14] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[15] 唐捷, 华青松, 元金石, 张健敏, 赵玉玲. 超级电容器中的二维材料[J]. CLDB, 2017, 31(9): 26-35.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed