Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 41-46    https://doi.org/10.11896/j.issn.1005-023X.2018.01.004
     材料与可持续发展(一)—— 面向洁净能源的先进材料 |
不同辐照粒子下钨及钨合金辐照损伤行为的研究进展
罗来马1,2(),徐梦瑶1,昝祥1,2,朱晓勇2,3,李萍1,2,程继贵1,2,吴玉程1,2,3
1 合肥工业大学材料科学与工程学院,合肥 230009
2 安徽省有色金属材料与加工工程实验室,合肥 230009
3 有色金属与加工技术国家地方联合工程研究中心,合肥 230009
Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles
Laima LUO1,2(),Mengyao XU1,Xiang ZAN1,2,Xiaoyong ZHU2,3,Ping LI1,2,Jigui CHENG1,2,Yucheng WU1,2,3
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009
2 Laboratories of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei 230009
3 National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei 230009
下载:  全 文 ( PDF ) ( 844KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 

研究核聚变、准稳态等离子体下面向等离子体材料的辐照行为,发展适合于先进实验超导托卡马克(EAST)、国际热核聚变实验堆(ITER)和中国聚变工程实验堆(CFETR)长脉冲高参数运行乃至未来聚变反应堆稳态运行的高性能面向等离子体材料是当前核聚变研究一项艰巨而又紧迫的任务。钨因具有高熔点、高导热率、低溅射腐蚀速率、高自溅射阀值以及低蒸气压和低氚滞留等优异性能,被认为是聚变装置最具有前景的面向等离子体材料。综合评述了钨及钨合金在不同辐照粒子下损伤行为的最新研究进展。粒子辐照造成的微观缺陷在钨及钨合金内部累积,辐照造成缺陷的形成和数量与钨基材料颗粒微观结构、第二相成分等密切相关,辐照缺陷情况各异。同时,辐照粒子种类、能量、剂量和温度等辐照条件都会对钨材料辐照后的形貌特征和缺陷产生重要影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗来马
徐梦瑶
昝祥
朱晓勇
李萍
程继贵
吴玉程
关键词:    核聚变堆  辐照损伤  面向等离子体材料    
Abstract: 

It is difficult and urgent task to develop a high-performance plasma facing materials for current nuclear fusion research by the irradiation behavior of PFMs, which is suitable for advanced experiment superconducting tokamak (EAST), international thermonuclear fusion reactor (ITER) and China fusion engineering experiment reactor (CFETR). Tungsten is considered to be the primary candidate for plasma facing materials in future fusion reactors owing to its superiority to other materials including high melting point, high thermal conductivity, low sputter corrosion rate, high sputtering threshold, low vapor pressure and low tritium inventory. In this paper, we review the research progress of damage of tungsten and tungsten alloy irradiated by various particles. The defects caused by irradiation are accumulate in tungsten and tungsten alloy. The formation and quantity of defects are closely related to the microstructure of the tungsten and the second phase components, the situation of defects are diverse. At the same time, the irradiation conditions, for instance, the kinds of particles, energy, flux and temperature, will also have an important impact on the morphology and defect of the irradiated sample.

Key words:  tungsten    nuclear fusion reactor    radiation damage    plasma facing materials
出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TG146.4  
基金资助: 国际热核聚变实验堆(ITER计划专项2014GB121001B);国家自然基金面上项目(51474083)
作者简介:  罗来马:男,1980年生,副教授,硕士研究生导师,主要从事核聚变材料研究 E-mail: luolaima@126.com
引用本文:    
罗来马, 徐梦瑶, 昝祥, 朱晓勇, 李萍, 程继贵, 吴玉程. 不同辐照粒子下钨及钨合金辐照损伤行为的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 41-46.
Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles. Materials Reports, 2018, 32(1): 41-46.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.004  或          https://www.mater-rep.com/CN/Y2018/V32/I1/41
Majorplasma
parameters
Thenumberofparticlesand
energyperunitarea
Maximumfluxofplasma 1.0×1024/(m2·s)
Heatload 5—10MW/m2
Averageneutronwallload 0.56(0.8)MW/m2
Temperatureofplasmasurface 200—1000℃
表1  面向等离子体材料所承受的辐照条件[6]
图1  He离子辐照超细晶钨的TEM图:(a)棒状纳米结构,(b)棒状纳米结构的高分辨图,(c)棒状结构间的氦泡,(d)样品表面下10 nm区域
图2  不同能量He+辐照后钨的横截面SEM图:(a) 2.3×1021/(m2·s),(b)5.4×1021/(m2·s),(c)7.7×1021/(m2·s),(d)1.0×1022/(m2·s),(e)1.3×1022/(m2·s),(f)1.6×1022/(m2·s)
图3  H+-C+混合离子束辐照样品的表面形貌图:(a)未预辐照,(b)300 keV H-辐照,(c)700 keV H-辐照
图4  不同钨材料辐照前TEM图:(a)纯钨,(b)钨铼合金,(c)钨钾合金,(d)超细晶W-0.5TiC/H
图5  不同钨材料辐照后TEM图:(a)纯钨,(b)钨铼合金,(c)钨钾合金,(d)超细晶W-0.5TiC/H
图6  辐照后钨的高分辨透射图:(a)含α相和β相的晶粒,(b)30 dpa辐照后α粗晶,(c、d)粗晶间隙区域空位图,(e)100 dpa辐照后图像
图7  0.89 dpa辐照样品的损伤区域的明场像
[1] Jef O, Yuichi O . Nuclear fusion: Status report and future prospects[J]. Energy Policy, 2016,96:770.
[2] Wang Shuang LuoLaima , ZhaoMei ling, , et al. Current status and development trend of toughening technology of tungsten-based materials[J]. Chinese Journal of Rare Metals, 2015,39(8):741(in Chinese).
[2] 王爽, 罗来马, 赵美玲 , 等. 钨基材料强韧化技术的现状与发展趋势[J]. 稀有金属, 2015,39(8):741.
[3] Tanabe T, Wada M, Ohgo T , et al. Application of tungsten for plasma limiters in TEXTOR[J]. Journal of Nuclear Materials, 2013, 283-287:1128.
[4] Ding Xiaoyu, Luo Laima, Huang Limei . Research progress in irradiation damage of tungsten and tungsten alloys for nuclear fusion reactor[J]. Chinese Journal of Rare Metals, 2015,39(12):1139(in Chinese).
[4] 丁孝禹, 罗来马, 黄丽枚 , 等. 核聚变堆用钨及钨合金辐照损伤研究进展[J]. 稀有金属, 2015,39(12):1139.
[5] Luo Laima , LuZelong,LiHao,etal.Current status and development trend on rare earth modified tungsten alloys[J]. Chinese Journal of Rare Metals, 2013,37(6):993(in Chinese).
[5] 罗来马, 罗泽龙, 李浩 , 等. 稀土改性钨合金的研究现状与发展趋势[J]. 稀有金属, 2013,37(6):993.
[6] Aymar R . Status of ITER[J]. Fusion Engineering and Design, 2002,61:5.
[7] Pitts R A , et al. Physics basis and design of the ITER plasma-facing components[J]. Journal of Nuclear Materials, 2011,415:S957.
[8] Neu R, Rohde V , Gerier A. Plasma operation with tungsten tiles at the central column of ASDEX upagrade[J]. Journal of Nuclear Materials, 2001, 290- 293:206.
[9] Shimada M, Costley A E, Federici G, et al. Overview of goals and performance of ITER and strategy for plasma-wall interaction investigation[J]. Journal of Nuclear Materials, 2005, 337- 339:808.
[10] HuYuanchao, Cao Xingzhong, Li Yuxiao , et al. Applications and progress of slow positron beam technique in the study of metal/alloy microdefects[J]. Acta Physics Science, 2015,64(24):247804(in Chinese).
[10] 胡远超, 曹兴忠, 李玉晓 , 等. 慢正电子束流技术在金属/合金微观缺陷研究中的应用[J]. 物理学报, 2015,64(24):247804.
[11] 11El-Atwani O, Gonderman S, Suslov S , et al. Early stage damage of ultrafine-grained tungsten materials exposedto low energy helium ion irradiation[J]. Fusion Engineering and Design, 2015,93:9.
[12] LiuLu, Liu Dongping, Hong Yi , et al. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions[J]. Journal of Nuclear Materials, 2016,471:1.
[13] TanXiaoyue, Luo Laima, Chen Hongyu , et al. Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation[J]. Scientific Reports, 2015,12755:1.
[14] WangWenmin, Roth J, Lindig S , et al. Blister formation of tungsten due to ion bombardment[J]. Journal of Nuclear Materials, 2001,299:124.
[15] RionA Causey . Hydrogen isotope retention and recycling in fusion reactor plasma-facing components[J]. Journal of Nuclear Materials, 2002,300:91.
[16] HaaszA A, Davis J W, Poon M , et al. Deuterium retention in tungsten for fusion use[J]. Journal of Nuclear Materials, 1998, 258- 263:889.
[17] HaaszA A, Poon M, Davis J W , et al. The effect of ion damage on deuterium trapping in tungsten[J]. Journal of Nuclear Materials, 1999, 266- 269:520.
[18] FukumotoM, Kashiwagi H, Ohtsuka Y , et al. Hydrogen behavior in damaged tungsten by high-energy ion irradiation[J]. Journal of Nuclear Materials, 2009, 386- 388:768.
[19] YukiSakoi, Mitsutaka Miyamoto, Kotaro Ono , et al. Helium irradiation effects on deuterium retention in tungsten[J]. Journal of Nuclear Materials , 2013,442:S715.
[20] NobutaY, Hatano Y, Matsuyama M , et al. Helium irradiation effects on tritium retention and long-term tritium release properties in polycrystalline tungsten[J]. Journal of Nuclear Materials, 2015,463:993.
[21] SteichenJ M . Tensile properties of neutron irradiated TZM and tungsten[J]. Journal of Nuclear Materials, 1976,60:13.
[22] MakotoFukuda, Akira Hasegawa, Takashi Tanno , et al. Property change of advanced tungsten alloys due to neutron irradiation[J]. Journal of Nuclear Materials, 2013,442:S273.
[23] AkiraHasegawa, Takashi Tanno ShuheiNogami, , et al. Property change mechanism in tungsten under neutron irradiation in various reactors[J]. Journal of Nuclear Materials, 2011,417:491.
[24] AkiraHasegawa, Makoto Fukuda KiyohiroYabuuchi, , et al. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys[J]. Journal of Nuclear Materials, 2016,471:175.
[25] AkiraHasegawa, Makoto Fukuda , ShuheiNogami, et al. Neutron irradiation effects on tungsten materials[J]. Fusion Engineering and Design, 2014,89:1568.
[26] OgorodnikovaO V, Tyburska B, Alimov V Kh , et al. Neutron irradiation effects on tungsten materials[J]. Journal of Nuclear Materials, 2011,415:S661.
[27] AhmatPolat, Fan Zhiguo, Luo Qi , et al. High-dose neutron induced radiation swelling simulated by heavy ion irradiation and its microscopic study with positron annihilation technique[J]. Nuclear Science and Techniques, 2011,11(1):52.
[28] Tyburska-Püschel M H J ’t Hoen, Ertl K, Maye M , et al. Saturation of deuterium retention in self-damaged tungsten exposed to high-flux plasmas[J]. Nuclear Fusion, 2012,52(2):023008.
[29] ArmstrongD E J, Yi X, Marquis E A , et al. Hardening of self ion implanted tungsten and tungsten 5wt% rhenium[J]. Journal of Nuclear Materials, 2013,432(1-3):428.
[30] FukumotoM, Kashiwagi H, Ohtsuka Y , et al. Deuterium trapping in tungsten damaged by high-energy hydrogen ion irradiation[J]. Journal of Nuclear Materials, 2009, 390- 391(1):572.
[31] ZhengYongnan, Zuo Yi, Zhou Dongmei , et al. Dose dependence of radiation damage in W studied by heavy ion irradiation simulation[J]. Nuclear Physics Review, 2006,23(2):207(in Chinese).
[31] 郑永男, 左翼, 周冬梅 , 等. 钨辐射损伤随辐照剂量变化的重离子辐照模拟研究[J]. 原子核物理评论, 2006,23(2):207.
[32] WangHongwei, Gao Yuan, Fu Engang , et al. Effect of high fluence Au ion irradiation on nanocrystalline tungsten film[J]. Journal of Nuclear Materials, 2013,442:189.
[33] Ciupiηski ?, Ogorodnikova O V , et al. TEM observations of radiation damage in tungsten irradiated by 20 MeV W ions[J]. Nuclear Instruments and Methods in Physics Research B, 2013,317:159.
[34] SinelnikovD, Kurnaev V, Kolodko D , et al. Modification of nanostructured tungsten surface by ion beam irradiation[J]. Physics Procedia, 2015,71:73.
[35] WangMingyang, Fusion high-heat flux testing on tungsten first wall materials by high-intensity pulsed pulsed particle beam irradiation[D]. Dalian: Dalian University of technology, 2013(in Chinese).
[35] 王明阳 . 强流脉冲粒子束辐照钨第一壁材料模拟核聚变高热负荷实验研究[D]. 大连:大连理工大学, 2013.
[36] ChenJianxun, Zheng Zhenhua, Wang Dezhi , et al. Analysis of ion-irradiated carbon film on tungsten[J]. Nuclear Techniques, 2000,23(7):503(in Chinese).
[36] 陈剑宣, 郑振华, 汪德志 , 等. 离子辐照钨基上碳薄膜微结构的分析[J]. 核技术, 2000,23(7):503.
[1] 仵金玲, 刘思雨, 张彪, 魏智磊, 史忠旗. 连接温度对W/Ni/Kovar真空扩散连接接头界面结构及结合强度的影响[J]. 材料导报, 2024, 38(4): 22090302-6.
[2] 安博星, 王雅洁, 肖永厚, 楚飞鸿. 液态前驱体化学气相沉积法生长单层二硒化钨[J]. 材料导报, 2024, 38(24): 23120071-6.
[3] 唐振中, 贾鲁涛, 林永权, 吴捷, 张亚梅. 钨尾矿粉对水泥基3D打印混凝土流变、水化及力学性能的影响[J]. 材料导报, 2024, 38(21): 23060169-6.
[4] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[5] 廖路, 张勇斌, 李鹏. 添加铜中间层的钨真空扩散焊接研究[J]. 材料导报, 2024, 38(13): 22100128-7.
[6] 乔永丰, 雷玉成, 姚奕强, 朱强. 坡口形状对CLAM钢焊缝抗辐照损伤性能的影响[J]. 材料导报, 2024, 38(10): 22100080-8.
[7] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[8] 胡冬冬, 宋述鹏, 刘俊男, 毕江元, 丁兴. CVD法制备单层二硒化钨薄膜及其生长机制研究[J]. 材料导报, 2023, 37(2): 21050222-6.
[9] 罗晓宇, 冯曰海, 赵鑫, 刘思余. 镁合金摆动多道增材层成形特征参数与尺寸控制规律研究[J]. 材料导报, 2023, 37(18): 22040093-7.
[10] 戴金荣, 唐志红, 段于森, 张景贤. Si3N4/W高温共烧陶瓷的制备与研究[J]. 材料导报, 2023, 37(17): 22040171-6.
[11] 曾斌, 曾祥荣, 黄万抚. 钨冶炼除磷渣中浸出钼和钨研究[J]. 材料导报, 2023, 37(15): 21120218-5.
[12] 李亮星, 朱志城, 贾孟熹, 黄茜琳. 硬质合金废料电解回收钨及W(Ⅵ)在熔盐中的电化学行为[J]. 材料导报, 2022, 36(Z1): 22010043-6.
[13] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[14] 杜军, 蒋敏博, 张永恒, 徐思远, 魏正英. TIG电弧复合熔滴沉积增材制造45钢/铅合金双金属结构工艺研究[J]. 材料导报, 2022, 36(2): 20100016-5.
[15] 于晓晨, 李华健, 高博扬, 蒋银林, 李小杰, 郑荣芳, 吴涵, 宋泽钰, 樊继斌, 赵鹏. Er3+/Yb3+共掺杂Ca0.5Gd(WO4)2荧光粉的发光性能和温度特性[J]. 材料导报, 2022, 36(18): 21050128-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
[10] Hong ZHANG,Ping ZHOU,Lan SUN,Hongyuan FAN. Effect of Solution Temperature on Microstructure and Properties of TP347HFG Heat Resistant Steel[J]. Materials Reports, 2018, 32(2): 234 -237 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed