Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 47-50    https://doi.org/10.11896/j.issn.1005-023X.2018.01.005
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能
谭永涛1,2(),孔令斌1,2,康龙1,2,冉奋1,2
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与可再生利用国家重点实验室,兰州 730050
Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance
Yongtao TAN1,2(),Lingbin KONG1,2,Long KANG1,2,Fen RAN1,2
1 College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 650KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 

采用两步化学氧化法,通过控制氧化剂的扩散合成了Nano-Au@PANI复合材料。采用透射电镜对其形貌进行了表征,采用电化学工作站对其电化学性能进行了测试,并研究了反应时间对其电化学性能的影响。结果表明,合成的Nano-Au@PANI复合材料具有蛋黄空心结构,PANI外壳层的厚度随时间的延长而增加,其作为电极材料比容量出现了先增大后减小的趋势。当反应时间为12 h时,其PANI外壳层的厚度约为21 nm,比容量为79 F·g -1

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭永涛
孔令斌
康龙
冉奋
关键词:  复合电极材料  金纳米颗粒  聚苯胺  超级电容器    
Abstract: 

The nano-Au@PANI was prepared via a two-step method of oxidative polymerization by controlling the diffusion of oxidizing agents. The morphology of nano-Au@PANI was characterized by TEM, and the performances of supercapacitor were measured by electrochemical work-station (CHI660E). Furthermore, the relationship of reaction time and the performances of supercapacitor were also studied. The results showed that the nano-Au@PANI composites possessed yolk-shell structure, and with extension of reaction time the specific capacitance first increased and then decreased. When the reaction time was 12 h, the shell thickness of PANI was about 21 nm, the specific capacitance was up to 79 F·g -1.

Key words:  composite electrode material    Au nanoparticle    polyaniline    supercapacitor
出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TB324  
  TQ316.3  
基金资助: 国家自然科学基金(51203071);博士后科学基金(2014M552509);甘肃省自然科学基金(2015GS05123)
作者简介:  谭永涛:男,1987年生,博士研究生,主要研究方向为超级电容器电极材料 E-mail: tanyongtao1987@163.com
引用本文:    
谭永涛, 孔令斌, 康龙, 冉奋. Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 《材料导报》期刊社, 2018, 32(1): 47-50.
Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance. Materials Reports, 2018, 32(1): 47-50.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.005  或          https://www.mater-rep.com/CN/Y2018/V32/I1/47
图1  Nano-Au@PANI 蛋黄空心结构构筑示意图
图2  (a)Nano-Au, (b)Nano-Au@PANI-6,(c)Nano-Au@PANI-12, (d)Nano-Au@PANI-36和(e)Nano-Au@PANI-48的透射电镜照片
图3  复合材料的电化学性能:(a, b) Nano-Au@PANI-6,(c, d)Nano-Au@PANI-12,(e, f)Nano-Au@PANI-24,(g, h)Nano-Au@PANI-36;(i, j)Nano-Au@PANI-48;(h)复合材料的循环伏安曲线(扫描速率:5 mV·s-1)和(k)交流阻抗曲线(电子版为彩图)
图4  不同电流密度下复合材料的比电容
[1] Simon P, Gogotsi Y . Materials for electrochemical capacitor[J]. Nature Materials, 2008,7(11):845.
[2] Burke A . Ultracapacitors: Why, how, and where is the technology[J]. Journal of Power Sources, 2000,91(1):37.
[3] Zhu Y, Murali S, Stoller M D , et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011,332(6037):1537.
[4] Zhang L L, Zhao X S . Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009,38(9):2520.
[5] Zhi M, Xiang C, Li J , et al. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review[J]. Nanoscale, 2013,5(1):72.
[6] Wang J G, Kang F, Wei B . Engineering of MnO2-based nanocomposites for high-performance supercapacitors[J]. Progress in Materials Science, 2015,74:51.
[7] Snook G A, Kao P, Best A S . Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011,196(1):1.
[8] Kimizuka O, Tanaike O, Yamashita J , et al. Electrochemical doping of pure single-walled carbon nanotubes used as supercapacitor electrodes[J]. Carbon, 2008,46(14):1999.
[9] Xia K, Gao Q, Jiang J , et al. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials[J]. Carbon, 2008,46(13):1718.
[10] EnterriaM, Pereira M F R, Martins J I , et al. Hydrothermal functionalization of ordered mesoporous carbons:The effect of boron on supercapacitor performance[J]. Carbon, 2015,95:72.
[11] LvW, Li Z, Deng Y , et al. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges[J]. Energy Storage Materials, 2016,2:107.
[12] GhoshA, Lee Y H . Carbon-based electrochemical capacitors[J]. ChemSusChem, 2012,5(3):480.
[13] ShanM L, Liu Y J, Li X , et al. KOH-activated carbons used as electrode materials for supercapacitor Material Review A: Review Papers, 2016,30(5):11(in Chinese).
[13] 单明礼, 刘玉静, 李霞 , 等. 氢氧化钾改性碳材料及其在超级电容器中的应用[J]. 材料导报:综述篇, 2016,30(5):11.
[14] FengC C, Wu A M, Huang H . Recent progress of N-doped porous carbon materials with applications to supercapacitor electrode Material Review A: Review Papers, 2016,30(1):143(in Chinese).
[14] 冯晨辰, 吴爱民, 黄昊 . 超级电容器电极用氮-掺杂多孔碳材料的研究进展[J]. 材料导报:综述篇, 2016,30(1):143.
[15] HuangM, Li F, Dong F , et al. MnO2-based nanostructures for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2015,3(43):21380.
[16] SuX H, Yu L, Cheng G . Hydrothermally synthesized manganese dioxide film as supercapacitor electrode Material Review B: Research Papers, 2015,29(5):18(in Chinese).
[16] 苏小辉, 余林, 程高 . 水热合成法制备超级电容器用二氧化锰薄膜电极[J]. 材料导报:研究篇, 2015,29(5):18.
[17] LangJ W, Kong L B, Wu W J , et al. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors[J]. Chemical Communications, 2008,35(35):4213.
[18] KongL B, Zhang J, An J J , et al. MWNTs/PANI composite materials prepared by in-situ chemical oxidative polymerization for supercapacitor electrode[J]. Journal of Materials Science, 2008,43(10):3664.
[19] ZhangJ, Kong L B, Li H , et al. Synjournal of polypyrrole film by pulse galvanostatic method and its application as supercapacitor electrode materials[J]. Journal of Materials Science, 2010,45(7):1947.
[20] BerzinaT, Pucci A, Ruggeri G , et al. Gold nanoparticles-polyaniline composite material:Synjournal, structure and electrical properties[J]. Synthetic Metals, 2011,161(13-14):1408.
[21] HasanM, Ansari M O, Cho M H , et al. Electrical conductivity, optical property and ammonia sensing studies on HCl doped Au@polyaniline nanocomposites[J]. Electronic Materials Letters, 2015,11(1):1.
[22] ZhangL, Peng H, Kilmartin P A , et al. Self-assembled hollow polyaniline/Au nanospheres obtained by a one-step synjournal[J]. Macromolecular Rapid Communications, 2008,29(7):598.
[23] WangX, Shen Y, Xie A , et al. Assembly of dandelion-like Au/PANI nanocomposites and their application as SERS nanosensors[J]. Biosensors & Bioelectronics, 2011,26(6):3063.
[24] SunH, Shen X, Yao L , et al. Measuring the unusually slow ionic diffusion in polyaniline via study of yolk-shell nanostructures[J]. Journal of the American Chemical Society, 2012,134(27):11243.
[25] LangX, Zhang L, Fujita T , et al. Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors[J]. Journal of Power Sources, 2012,197:325.
[26] NobregaM M, Martins V L, Torresi R M , et al. One-step synjournal, characterization, and properties of emeraldine salt nanofibers containing gold[J]. The Journal of Physical Chemistry C, 2014,118(8):4267.
[27] HeJ, Liu Y, Babu T , et al. Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers[J]. Journal of the American Chemical Society, 2012,134(28):11342.
[28] FrensG, , Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature Physical Science, 1973,241(105):20.
[29] HuC C, Lin J Y . Effects of the loading and polymerization temperature on the capacitive performance of polyaniline in NaNO3[J]. Electrochimica Acta, 2002,47(25):4055.
[30] WangY G, Li H Q, Xia Y Y . Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance[J]. Advanced Materials, 2006,18(19):2619.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[3] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[4] 陈渊泽, 牛春晖, 王雷, 杨明庆, 张世玉, 吕勇. 聚苯胺红外电致变色器件研究进展[J]. 材料导报, 2024, 38(5): 22090259-10.
[5] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[6] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[7] 高雅倩, 赵亚娟, 谢会东, 胡昌宇, 王逸博, 王康康, 杨厂. 高比电容MOF衍生的介孔球状Co3O4/NiO/CuO[J]. 材料导报, 2024, 38(12): 22110033-7.
[8] 周宇祥, 施天宇, 赵晨媛, 尹海宏, 宋长青, 郁可. 聚苯胺包覆的硫化锌-碳纳米管用作正极载体材料提高锂硫电池性能[J]. 材料导报, 2024, 38(1): 22060085-7.
[9] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[10] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[11] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[12] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[13] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[14] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[15] 满世甲, 杜雪岩, 申永前, 龙建. 镍渣衍生Fe3O4/聚苯胺复合材料的制备及微波吸收性能研究[J]. 材料导报, 2023, 37(22): 22030093-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed