Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 126-130    https://doi.org/10.11896/j.issn.1005-023X.2017.013.016
  新材料新技术 |
石墨烯基储能材料的增材制造研究进展
何博1, 潘宇飞2, 陆敏1
1 上海工程技术大学材料工程学院,上海 201620;
2 武汉理工大学材料科学与工程学院,武汉 430070
Additive Manufacturing of Graphene-based Energy Storage Materials:A State-of-the-art Review
HE Bo 1, PAN Yufei2, LU Min1
1 School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620;
2 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070
下载:  全 文 ( PDF ) ( 1503KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯是一种具有大比表面积、高电导率和良好的力学性能的二维材料,在高容量和大功率储能器件方面具有广阔的应用前景。然而现有的各种石墨烯电极制造技术无论从技术层面还是在生产率、性能方面都难以满足当前工业应用的需求。石墨烯增材制造(石墨烯3D打印)在复杂三维石墨烯结构的制造方面具有突出的优势和潜力,而且还具有设备简单、成型结构可控性高等优点。关于石墨烯基电极材料的增材制造及应用在近两年内迅速发展。概述了基于增材制造制备石墨烯结构的典型技术——直写成型(DIW)的机理和优点,介绍了基于该技术制备的石墨烯基电极材料在超级电容器和锂离子电池领域的应用,最后对石墨烯基电极材料的增材制造面临的挑战和未来发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何博
潘宇飞
陆敏
关键词:  石墨烯  增材制造  电极材料  直写成型    
Abstract: Graphene is a two-dimensional material that offers a combination of large specific surface area,excellent electrical conductivity and exceptional mechanical properties,thus can be broadly applied to fabricate high capacity and power energy storage devices. However, current fabrication schemes of graphene electrodes are unsatisfactory for industrial applications from the perspectives of technics, productivity and property. The additive manufacturing of graphene (three-dimensional printing of graphene) possesses outstanding advantages and potential on fabricating complicated three dimensional graphene micro-lattice.Furthermore, this method is characterized by its low cost and excellent structural properties through manipulating the structure from nanometer up to centimeter scale. In recent two years, the additive manufacturing of graphene and its applications have developed rapidly.This paper introduces the mechanism and advantages of the fabrication scheme of graphene based on a typical additive manufacturing technique—direct ink writing (DIW),describes DIW′s application attempts to manufacture graphene-based materials for energy storage systems (lithium-ion batteries, supercapacitors). It also discusses the challenges and future trend of the additive manufacturing of graphene-based electrodes.
Key words:  graphene    additive manufacturing    electrode materials    direct ink writing
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TB34  
通讯作者:  陆敏:通讯作者,男,1969年生,教授,主要从事高温合金和钛合金的精密成形及能源材料的研究 E-mail:minlu69@hotmail.com   
作者简介:  何博:男,1974年生,副教授,主要从事高温合金和钛合金的精密成形以及能源材料的研究
引用本文:    
何博, 潘宇飞, 陆敏. 石墨烯基储能材料的增材制造研究进展[J]. 《材料导报》期刊社, 2017, 31(13): 126-130.
HE Bo, PAN Yufei, LU Min. Additive Manufacturing of Graphene-based Energy Storage Materials:A State-of-the-art Review. Materials Reports, 2017, 31(13): 126-130.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.016  或          http://www.mater-rep.com/CN/Y2017/V31/I13/126
1 Stein A. Energy storage: Batteries take charge[J]. Nat Nanotech-nol,2011,6(5):262.
2 Zhu J, Yang D, Yin Z, et al. Graphene and graphene-based mate-rials for energy storage applications[J]. Small,2014,10(17):3480.
3 Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nat Mater,2012,11(1):19.
4 Peigney A, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J]. Carbon,2001,39(4):507.
5 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
6 Geim A K. Graphene: Status and prospects[J]. Science,2009,324(5934):1530.
7 Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett,2008,8(3):902.
8 Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and Langmuir-Blodgett films[J]. Nature Nanotechnol,2008,3(9):538.
9 Zhu C, Liu T, Qian F, et al. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores[J]. Nano Lett,2016,16(6):3448.
10 García-Tuñon E, Barg S, Franco J, et al. Printing in three dimensions with graphene[J]. Adv Mater,2015,27(10):1688.
11 Cesarano J. A review of robocastingtechnology[M]. Cambridge: Cambridge University Press,1998: 542.
12 Lewis J A. Direct ink writing of 3D functional materials[J]. Adv Funct Mater,2006, 16(17):2193.
13 Smay J E, Gratson G M, et al. Directed colloidal assembly of 3D periodic structures[J]. Adv Mater,2002,14(18):1279.
14 Zhu C, Smay J E. Thixotropic rheology of concentrated alumina colloidal gels for solid freeform fabrication[J]. J Rheol,2011,55(3):655.
15 Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano,2010,4(7):4324.
16 Le L T, Ervin M H, Qiu H, et al. Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide[J]. Electrochem Commun,2011,13(4):355.
17 Bagri A, et al. Structural evolution during the reduction of chemically derived graphene oxide[J]. Nat Chem,2010,2(7):581.
18 Pei S, Cheng H. The reduction of graphene oxide[J]. Carbon,2012,50(9):3210.
19 Barg S, et al. Mesoscale assembly of chemically modified graphene into complex cellular networks[J]. Nat Commun,2014,5:4328.
20 Qiu L, Liu J Z, Chang S L Y, et al. Biomimetic superelastic graphene-based cellular monoliths[J]. Nat Commun,2012,3:1241.
21 Hu H, Zhao Z, Wan W, et al. Ultralight and highly compressible graphene aerogels[J]. Adv Mater, 2013,25(15):2219.
22 Jakus A E, Secor E B, Rutz A L, et al. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications[J]. ACS Nano,2015,9(4):4636.
23 Zhu C, Han T Y, Duoss E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nat Commun, DOI:10.1038/ncomms7962.
24 Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Adv Mater,2013,25(18):2554.
25 Zhang Q, Zhang F, Medarametla S P, et al. 3D printing of grapheneaerogels[J]. Small,2016, 12(13):1702.
26 Lin Y, Liu F, Casano G, et al. Pristine graphene aerogels by room-temperature freeze gelation.[J]. Adv Mater,2016,28(36):7993.
27 吕勇. 石墨烯及石墨烯/碳纳米管的制备与储能应用[D]. 成都: 西南交通大学,2015:81.
28 Miller J R, Simon P. Electrochemical capacitors for energy management[J]. Science,2008, 321(5889):651.
29 An K H, Kim W S, Park Y S, et al. Supercapacitors using single-walled carbon nanotube electrodes[J]. Adv Mater,2001,13(7):497.
30 Kim S, Koo H, Lee A, et al. Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors[J]. Adv Mater,2014,26(30):5108.
31 Gamby J, Taberna P L, Simon P, et al. Studies and characterisa-tions of various activated carbons used for carbon/carbon supercapa-citors[J]. J Power Sources,2001,101(1):109.
32 Chmiola J, Largeot C, Taberna P, et al. Monolithic carbide-derived carbon films for micro-supercapacitors[J]. Science,2010,328(5977):480.
33 Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nat Nanotech-nol,2010,5(9):651.
34 Zhou Y, Candelaria S L, Liu Q, et al. Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability[J]. J Mater Chem A,2014,2(22):8472.
35 Huang Y,et al. An overview of the applications of graphene-based materials in supercapacitors[J]. Small,2012,8(12):1805.
36 Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Lett,2010,10(12):4863.
37 Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Adv Energy Mater, DOI: 10.1002/aenm.201300816.
38 Jiang X, Wang X, Dai P, et al. High-throughput fabrication of strutted graphene by ammonium-assisted chemical blowing for high-performance supercapacitors[J]. Nano Energy,2015, 16:81.
39 Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nat Mater,2011,10(6):424.
40 Wang Y, Tang J, Kong B, et al. Freestanding 3D graphene/cobalt sulfide composites for supercapacitors and hydrogen evolution reaction[J]. RSC Adv,2015,5(9):6886.
41 Bi H, Yin K, Xie X, et al. Low temperature casting of graphene with high compressive strength[J]. Adv Mater,2012,24(37):5124.
42 Worsley M A, Olson T Y, Lee J R I, et al. High surface area, sp2-cross-linked three-dimensional graphene monoliths[J]. J Phys Chem Lett,2011,2(8):921.
43 Qiu L, Liu J Z, Chang S L Y, et al. Biomimetic superelastic graphene-based cellular monoliths[J]. Not Commun,2012,3:1241.
44 Kim J H, Chang W S, Kim D, et al. 3D printing of reduced graphene oxide nanowires[J]. Adv Mater, 2015,27(1):157.
45 Gryglewicz G, Šliwak A, Béguin F. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors[J]. ChemSusChem,2013,6(8):1516.
46 Yu J K A H. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes[J]. Nanotechnology,2012,23(6):65401.
47 Wang G, Wang H, Lu X, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Adv Mater,2014,26(17):2676.
48 Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphenenanosheet families for use in rechargeable lithium ion batteries[J]. Nano Lett,2008,8(8):2277.
49 Cai Dandan. Study on graphene-based high-performance anode material for lithium-ion batteries [D]. Guangzhou: South China University of Technology,2014:136.
蔡丹丹. 基于石墨烯的高性能锂离子电池负极材料的研究[D]. 广州: 华南理工大学,2014:136.
50 Sun K, Wei T, Ahn B Y, et al. 3D printing of interdigitated li-ion microbatteryarchitectures[J]. Adv Mater,2013,25(33):4539.
51 Fu K, Wang Y, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Adv Mater,2016,28(13):2587.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[4] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[7] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[10] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[11] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[12] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[13] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[14] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[15] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed