Please wait a minute...
材料导报  2019, Vol. 33 Issue (20): 3512-3519    https://doi.org/10.11896/cldb.18080116
  高分子与聚合物基复合材料 |
高安全性PEO-Al2O3复合隔膜的制备及电化学性能
张文魁1, 王佳1, 李姣姣1, 周晓政2, 叶张军2, 黄辉1, 甘永平1, 夏阳1
1 浙江工业大学材料科学与工程学院,杭州 310014
2 浙江谷神能源科技股份有限公司,杭州 311245
Synthesis and Electrochemical Performance of PEO-Al2O3 Hybrid Membrane for High Safety Lithium-ion Batteries
ZHANG Wenkui1, WANG Jia1, LI Jiaojiao1, ZHOU Xiaozheng2, YE Zhangjun2, HUANG Hui1, GAN Yongping1, XIA Yang1
1 College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014
2 Zhejiang Godsend Power Technology Co., Ltd, Hangzhou 311245
下载:  全 文 ( PDF ) ( 3846KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以聚氧化乙烯(PEO)和氧化铝(Al2O3)为原料,利用刮涂法制备了一系列PEO-Al2O3复合隔膜,探索了Al2O3添加量对PEO-Al2O3复合隔膜的性能影响。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能量色散谱仪(EDS)、X射线衍射仪(XRD)、红外光谱(FTIR)、X射线光电子能谱分析(XPS)、热重分析(TG)及燃烧实验法对复合隔膜的形貌、元素分布、相组成、表面化学状态和热稳定性进行表征。通过线性扫描伏安法(LSV)、电化学交流阻抗法(EIS)、孔隙率测试和吸液率实验考察了复合隔膜的电化学窗口、离子电导率、孔隙率和吸液率。实验结果显示,PEO-Al2O3-90复合隔膜具有最高的离子电导率(1.21×10-3 S/cm)、最大的吸液率(260%)、较好的热稳定性、较高的孔隙率(47%)以及较宽的电化学窗口(0~4.8 V)。通过组装电池发现,PEO-Al2O3-90复合隔膜电池在电流密度为0.1C时表现出较高的放电比容量、优异的循环稳定性以及较强的安全性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文魁
王佳
李姣姣
周晓政
叶张军
黄辉
甘永平
夏阳
关键词:  聚氧化乙烯  氧化铝  隔膜  离子电导率  阻燃性  锂离子电池    
Abstract: In this work, a series of polyethylene glycol oxide (PEO)-aluminium oxide (Al2O3) hybrid membranes were prepared by a slurry coating method. The effect of the mass ratio of PEO/Al2O3on the performance of PEO-Al2O3 hybrid membranes was systematically investigated. Scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TG) and combustion test were performed to reveal the morphology, element distribution, phase composition, surface chemical state and thermal stability of PEO-Al2O3 hybrid membranes. In addition, linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), porosity and electrolyte uptake test were employed to investigate the electrochemical stability, ionic conductivity, porosity and electrolyte uptake of PEO-Al2O3 hybrid membranes. The results showed that PEO-Al2O3-90 hybrid membrane had a high ionic conductivity (1.21×10-3 S/cm), high electrolyte uptake (260%), good thermal stability, high porosity (47%) and wide electrochemical stabilization window (0—4.8 V). At the current density of 0.1C, LiFePO4|PEO-Al2O3-90|Li cells assembled with PEO-Al2O3-90 hybrid membrane exhibited a high discharge specific capacity, superior cycling stability and enhanced safety.
Key words:  polyethylene glycol oxide    aluminum oxide    hybrid membrane    ionic conductivity    flammability    lithium-ion battery
               出版日期:  2019-10-25      发布日期:  2019-08-29
ZTFLH:  TQ152  
基金资助: 国家自然科学基金(21403196;51572240;51677170;51777194);浙江省自然科学基金(LY16E070004;LY17E020010)
作者简介:  张文魁,浙江工业大学教授,博士研究生导师,于1997年在浙江大学材料系获得材料科学与工程专业工学博士学位。在国内外学术期刊上发表论文200余篇,申请国家发明专利80余项,其中授权31项。其团队主要研究方向包括:先进二次电池技术及能源储存和转化材料,如锂离子电池,锂硫电池,燃料电池和超级电容器。负责完成科研项目20多项,包括国家“863”计划专项,国家自然科学基金项目等,获省级科技进步奖二等奖一项。已培养出博士10余名、硕士50余名,本科生百余名。夏阳,浙江工业大学副教授,硕士研究生导师。2013年博士毕业于浙江工业大学材料科学与工程学院,留校至今。其中2017年到美国得克萨斯州立大学奥斯汀分校Arumugam Manthiram课题组访问交流学习。在国内外学术期刊上发表论文100余篇,申请国家发明专利48项,其中授权18项。其主要研究方向为生物质碳基储能材料及其在锂离子电池、锂硫电池和超级电容器中的应用。主持和承担了科研项目10多项,包括国家自然科学基金和浙江省自然科学基金等,获浙江省科技进步奖二等奖一项,已培养出博士5名、硕士10余名,本科生20余名。nanoshine@zjut.edu.cn
引用本文:    
张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
ZHANG Wenkui, WANG Jia, LI Jiaojiao, ZHOU Xiaozheng, YE Zhangjun, HUANG Hui, GAN Yongping, XIA Yang. Synthesis and Electrochemical Performance of PEO-Al2O3 Hybrid Membrane for High Safety Lithium-ion Batteries. Materials Reports, 2019, 33(20): 3512-3519.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080116  或          http://www.mater-rep.com/CN/Y2019/V33/I20/3512
1 Larcher D, Tarascon J. Nature Chemistry, 2015, 7(1), 19.2 Lee E S, Huq A, Chang H Y, et al. Chemistry of Materials, 2012, 24(3), 600.3 Xiao H, Xia Y, Zhang W K, et al. Journal of Materials Chemistry A, 2013, 1(6), 2307.4 Yan Y, Li B, Guo W, et al. Journal of Power Sources, 2016, 329, 148.5 Yan Y, Gu P, Zheng S S, et al. Journal of Materials Chemistry A, 2016, 4(48), 19078.6 Yan Y, Xu H, Guo W, et al. Inorganic Chemistry Frontiers, 2016, 3, 791.7 Yan Y, Luo Y Q, Ma J Y, et al. Small, 2018, 14, 1801815.8 Kim S K, Jung Y C, Kim D H, et al. Journal of the Electrochemical Society, 2016, 163(6), A974.9 Zhu Y S, Wang F X, Liu L L, et al. Energy & Environmental Science, 2013, 6(2), 618.10 Zhang S S. Journal of Power Sources, 2007, 164(1), 351.11 Chen J C, Yan Y D, Sun T, et al. Journal of the Electrochemical Society, 2014, 161(9), A1241.12 Sun C W, Liu J, Gong Y D, et al. Nano Energy, 2017, 33, 363.13 Kato Y, Hori S, Saito T, et al. Nature Energy, 2016, 1, 16030.14 Quartarone E, Mustarelli P. Chemical Society Reviews, 2011, 40(5), 2525.15 Yu C, Ganapathy S, Eck E R H V, et al. Journal of Materials Chemistry A, 2017, 5(40), 21178.16 Janek J, Zeier W G. Nature Energy, 2016, 1(9), 16141.17 Xu K. Chemical Reviews, 2014, 114(23), 11503.18 Zhang W B, Weber D A, Weigand H, et al. ACS Applied Materials & Interfaces, 2017, 9(21), 17835.19 Liao Y H, Li X P, Fu C H, et al. Journal of Power Sources, 2011, 196(4), 2115.20 Zhang Z H, Zhao Y R J, Chen S, et al. Journal of Materials Chemistry A, 2017, 5(32), 16984.21 Jung Y C, Lee S M, Choi J H, et al. Journal of the Electrochemical So-ciety, 2015, 162(4), A704.22 Dissanayake M A K L. Ionics, 2004, 10(3-4), 221.23 Zhang X W, Wang C, Appleby A J, et al. Journal of Power Sources, 2002, 112(1), 209.24 Bandara T M W J, Karunathilaka D G N, Ratnasekera J L, et al. Ionics, 2017, 23(7), 1711.25 Rao R P, Sharma N, Peterson V K, et al. Solid State Ionics, 2013, 230(11), 72.26 Cheng S, Smith D M, Pan Q, et al. RSC Advances, 2015, 5(60), 48793.27 Osada I, Vries D H, Scrosati B, et al. Angewandte Chemie-international Edition, 2016, 55(2), 500.28 Prabakaran P, Manimuthu R P, Gurusamy S, et al. Polymer Science, 2017, 35(3), 407.29 Nancy A C, Suthanthiraraj S A. Ionics, 2017, 23(6), 1439.30 Choudhary S. Journal of Physics & Chemistry of Solids, 2018, 121, 196.31 Sengwa R J, Choudhary S. Journal of Alloys & Compounds, 2017, 701, 652.32 Masoud E M, El-Bellihi A A, Bayoumy W A, et al. Journal of Alloys & Compounds, 2013, 575(8), 223.33 Jinisha B, Anilkumar K M, Manoj M, et al. Ionics, 2017, 24(6), 1675.34 Hyun J. Polymer, 2001, 42(15), 6473.35 Zhang Y, Fan W, Du H Q, et al. Surface Review & Letters, 2017, 25, 1850102.36 Wenning B, Rizis G, Calabrese D R, et al. Macromolecules, 2017, 50(7), 2656.37 Mázl C E, Popgeorgievski O, Kumorek M M, et al. Biomaterials Science, 2017, 5(6), 1130.38 Rajendran S, Mahendran O, Kannan R. Journal of Physics & Chemistry of Solids, 2002, 63(2), 303.39 Yu D Y W, Fietzek C, Weydanz W, et al. Journal of the Electrochemical Society, 2007, 154(4), A253.40 Xia Y, Zhang W K, Huang H, et al. Journal of Power Sources, 2011, 196(13), 5651.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[3] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[4] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[5] 田响宇, 尚心莲, 李红霞, 王新福, 刘国齐, 杨文刚, 于建宾. 在内衬材料中添加氢氧化铝提升长水口的抗热震性:内衬材料显微组织与性能及长水口颈部最大热应力数学模型[J]. 材料导报, 2019, 33(4): 611-616.
[6] 程成, 肖方明, 王英, 唐仁衡, 裴和中. 基于石墨烯改性的Fe-Si@C/石墨烯复合负极材料[J]. 材料导报, 2019, 33(18): 3005-3011.
[7] 王英, 阮威, 唐仁衡, 肖方明, 孙泰, 黄玲. 不同粒径纳米硅制备Si@C/石墨负极材料及其电化学性能[J]. 材料导报, 2019, 33(18): 3021-3025.
[8] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[9] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[10] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[11] 周淑千, 徐卫兵, 周然, 周正发, 马海红, 任凤梅. P(AN-co-MA-co-MMA)@H2O微胶囊/密胺高阻燃泡沫的制备及性能[J]. 材料导报, 2019, 33(12): 2095-2099.
[12] 马砺, 刘志超, 肖旸, 康付如, 杨昆, 邓军. 含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11): 1836-1841.
[13] 祁渊, 龚俊, 杨东亚, 王宏刚, 高贵, 任俊芳, 陈生圣. 纳米Al2O3填料增强PEEK-PTFE复合材料基于环-块摩擦结构的摩擦过程研究[J]. 材料导报, 2019, 33(10): 1756-1761.
[14] 郭雅芳, 肖剑荣, 侯永宣, 齐孟, 蒋爱华. 锂硫电池隔膜改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1073-1078.
[15] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed