Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1756-1761    https://doi.org/10.11896/cldb.18030212
  高分子与聚合物基复合材料 |
纳米Al2O3填料增强PEEK-PTFE复合材料基于环-块摩擦结构的摩擦过程研究
祁渊1, 龚俊1, 杨东亚1, 王宏刚2, 高贵2, 任俊芳2, 陈生圣2
1 兰州理工大学机电工程学院,兰州 730050
2 中国科学院兰州化学物理研究所固体润滑国家重点实验室,兰州 730000
Study on Tribological Properties Evolution of PTFE Composites Filled with PEEK and Nano-Al2O3 Based on Block-on-ring Friction Model
QI Yuan1, GONG Jun1, YANG Dongya1, WANG Honggang2, GAO Gui2, REN Junfang2, CHEN Shengsheng2
1 School of Mechanical & Electronical Engineering, Lanzhou University of Technology, Lanzhou 730050
2 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000
下载:  全 文 ( PDF ) ( 18798KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究旨在探索纳米Al2O3填料增强PEEK-PTFE复合材料摩擦过程中摩擦学性能的演变规律。用不同体积比的聚醚醚酮(PEEK)和纳米Al2O3对聚四氟乙烯(PTFE)进行填充改性, 经专用模具冷压、烧结炉烧结成型制备得到复合材料样品。利用MRH-3型高速环-块摩擦试验机进行摩擦磨损性能测试,获取不同阶段摩擦学性能数据,计算出整个摩擦实验过程中样品的瞬时磨损率。利用扫描电镜(SEM)和仿真模拟软件(ABAQUS)分别对摩擦过程中对偶钢环表面形貌的演化和复合材料的接触应力变化进行分析。结果表明:PEEK和纳米Al2O3可以协同提高PTFE的抗磨损性能,其中10%PEEK/PTFE具有最佳的抗磨损性能(3.69×10-6 mm3/(N·m))和最低的摩擦系数(0.19)。添加5%的纳米Al2O3后,复合材料的硬度和热扩散系数有了显著提高。材料的瞬时磨损率在摩擦过程中呈先增大再降低最后保持平稳的变化趋势。试样的接触压力在摩擦初期随磨损量的增大而急剧降低,后期则逐渐趋于稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
祁渊
龚俊
杨东亚
王宏刚
高贵
任俊芳
陈生圣
关键词:  聚四氟乙烯  纳米氧化铝  聚醚醚酮  环-块摩擦结构  摩擦学性能    
Abstract: The present work aimed at exploring the tribological properties evolution of PEEK- and nano-Al2O3-filled PTFE composites during the friction process. PTFE was referenced with different volume fraction PEEK and Al2O3 nanoparticles, then cold pressed and sintered by welding furnace according to the temperature control program. The tribological performance of composites was measured by MRH-3 tribological behavior tes-ter, which provided experimental data at different friction stages, and the instantaneous wear rate was calculated throughout the entire friction process. The morphology of the wear surface of samples and the transfer film on the counterpart ring was observed with scanning electronic microscopy (SEM). Analysis of contact stress of composites in friction process was carried out by using simulation software ABAQUS. The results showed that the PEEK and nano-Al2O3 particles significantly improve the wear resistance of PTFE. PTFE composite filled with 10%PEEK particles displays the best wear resistance performance (wear rate 3.69×10-6 mm3/(N·m)) and the lowest friction coefficient (0.19), and the addition of 5% nano-Al2O3 contributes to higher hardness and thermal diffusivity. The instantaneous wear rate appeared to increase first sharply and then decrease during the friction process, and finally maintained a steady change trend. The contact pressure of the sample was determined to decrease rapidly with the increase of the loss mass in the initial stage of friction, and gradually level off at the later stage.
Key words:  PTFE    nano-Al2O3    PEEK    block-on-ring friction model    tribological properties
                    发布日期:  2019-05-16
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51165022);甘肃省自然科学基金(1606RJZA166)
通讯作者:  gongjjdxy@sohu.com   
作者简介:  祁渊,兰州理工大学机械制造及自动化专业在读博士研究生。以第一作者在国内外学术期刊上发表论文7篇。主要从事复合材料摩擦学研究。 龚俊,兰州理工大学教授,博士研究生导师。硕士毕业于甘肃工业大学机电工程系并留校至今。在国内学术期刊发表论文60余篇。其团队主要研究方向包括:数控珩磨机床;喷涂机器人轨迹优化研究;斯特林发动机密封研究等。
引用本文:    
祁渊, 龚俊, 杨东亚, 王宏刚, 高贵, 任俊芳, 陈生圣. 纳米Al2O3填料增强PEEK-PTFE复合材料基于环-块摩擦结构的摩擦过程研究[J]. 材料导报, 2019, 33(10): 1756-1761.
QI Yuan, GONG Jun, YANG Dongya, WANG Honggang, GAO Gui, REN Junfang, CHEN Shengsheng. Study on Tribological Properties Evolution of PTFE Composites Filled with PEEK and Nano-Al2O3 Based on Block-on-ring Friction Model. Materials Reports, 2019, 33(10): 1756-1761.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030212  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1756
1 Bunn C W, Cobbold A J, Palmer R P.Polymer Chemistry, 2010, 28(117), 365.
2 Speerschneider C J, Li C H. Journal of Applied Physics, 1962, 33(5), 1871.
3 Mclaren K G, Tabor D. Nature, 1963, 197, 856.
4 Makinson K R, Tabor D. Proceedings of the Royal Society of London, 1964, 281(1384), 49.
5 Lancaster J K.Wear, 1972, 5(6), 249.
6 Tanaka K, Uchiyama Y, Toyooka S. Wear, 1972, 23(2), 153.
7 Tanaka K.Wear, 1982, 75(1), 183.
8 Blanchet T A, Kennedy F E.Wear, 1992, 153(1), 229.
9 Gong L, Xue Q J, Wang H L. Wear, 1989, 134(2), 283.
10 Qi Y, Gong J, Yang D Y, et al. Functional Materials, 2015(11),11069 (in Chinese).
祁渊,龚俊,杨东亚,等.功能材料,2015(11), 11069.
11 Zhang Z, Klein P, Friedrich K.Composites Science and Technology, 2002, 62(7-8), 1001.
12 Mi X, Gong J, Cao W H, et al.Materials Review B: Research Papers, 2017,31(9), 102.
米翔,龚俊,曹文翰,等.材料导报:研究篇,2017,31(9), 102.
13 Qiao H, Guo Q, Tian A, et al.Tribology International, 2007, 40(1), 105.
14 Zhang G, Chang L, Schlarb A K.Composites Science and Technology, 2009, 69(7-8), 1029.
15 Avanzini A, Donzella G, Mazzù A, et al.Wear, 2013, 57, 22.
16 Lal B, Alam S, Mathur G N.Tribology Letters, 2007, 25(1), 71.
17 Schroeder R, Torres F W, Binder C, et al.Wear, 2013, 301(1-2), 717.
18 Burris D L, Sawyer W G.Wear, 2006, 260(7-8), 915.
19 Li F, Hu K, Li J, et al.Wear, 2001, 249(10-11), 877.
20 Sawyer W G, Freudenberg K D, Bhimaraj P, et al.Wear, 2003, 254(5-6), 573.
21 Ye J, Khare H S, Burris D L.Wear, 2013, 297(1-2), 1095.
22 Burris D L, Sawyer W G.Tribology Transactions, 2005, 48(2), 147.
23 Mcelwain S E, Blanchet T A, Schadler L S, et al.Tribology Transactions, 2008, 51(3), 247.
24 Khare H S, Burris D L.Polymer, 2010, 51(3), 719.
25 Cao W H, Gong J, Yang D Y, et al. Polymeric Materials Science and Engineering, 2017, 5(33), 78.
曹文翰,龚俊,杨东亚,等.高分子材料科学与工程,2017,5(33), 78.
26 Su F H, Zhang Z Z, Liu W M.Wear, 2008, 264(7-8), 562.
27 Xue Q J, Zhang Z Z, Liu W M.Journal of Applied Polymer Science, 2001, 80(11), 1891.
28 Beckford S, Wang Y A, Zou M.Tribology Transactions, 2011, 54(6), 849.
[1] 苏鹏, 熊云, 刘晓, 杨鹤, 范林君. 洋葱状纳米碳烟颗粒在基础油中的摩擦学性能[J]. 《材料导报》期刊社, 2018, 32(8): 1258-1262.
[2] 陶俊, 王晓峰, 韩仲熙, 冯博, 南海, 谢中元, 黄亚峰. 铝粉/聚四氟乙烯机械活化含能材料的制备及其微观性能研究[J]. 材料导报, 2018, 32(6): 894-898.
[3] 丁杰, 赵春霞, 吴凯, 易秀丽, 郑治. 聚乙烯醇/磺化聚醚醚酮/对氨基二苯胺电活性复合膜的制备与性能[J]. 《材料导报》期刊社, 2018, 32(14): 2481-2485.
[4] 王淑庆, 王成彪, 朱丽娜, 岳文, 付志强, 康嘉杰. Si3N4和52100钢对磨副材料对CrN薄膜干摩擦学行为的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 41-46.
[5] 吴唯, 陈诗英, 宗孟静子. 纳米Al2O3/聚醚砜-环氧树脂复合材料的介电性能及热稳定性能[J]. 《材料导报》期刊社, 2017, 31(20): 21-24.
[6] 国洪建, 贾均红, 张振宇, 梁补女, 陈文元, 李博, 汪建义. 脉冲激光沉积VN/Ag复合薄膜的组织及摩擦学性能研究*[J]. 《材料导报》期刊社, 2017, 31(2): 55-59.
[7] 米翔, 龚俊, 曹文翰, 王宏刚, 任俊芳. 纳米SiC与PI填充改性PTFE复合材料的摩擦磨损性能*[J]. 《材料导报》期刊社, 2017, 31(18): 102-108.
[8] 宋凯强, 曾美琴, 朱敏, 胡仁宗, 鲁忠臣. 纳米相复合Al-Sn合金的反应球磨制备及性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 68-72.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed