Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 21-24    https://doi.org/10.11896/j.issn.1005-023X.2017.020.005
  材料研究 |
纳米Al2O3/聚醚砜-环氧树脂复合材料的介电性能及热稳定性能
吴唯, 陈诗英, 宗孟静子
华东理工大学材料科学与工程学院,中德先进材料联合研究中心,上海 200237
Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites
WU Wei, CHEN Shiying, ZONG Mengjingzi
School of Materials Science and Engineering, East China University of Science and Technology, Sino-German Joint Research Center of Advanced Materials, Shanghai 200237
下载:  全 文 ( PDF ) ( 1414KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验制备了纳米Al2O3/聚醚砜-环氧树脂复合材料,考察了不同纳米氧化铝和聚醚砜的用量对复合体系力学和介电性能的影响,并对其热稳定性能进行了研究。结果表明:当添加1 phr纳米氧化铝(Nano-Al2O3)和5 phr聚醚砜(PES)时,三元复合材料EP/5PES/1Al2O3的拉伸强度提高到58 MPa,断裂伸长率达到13%,冲击强度达到16.2 kJ/m2,相比纯环氧树脂分别提高了61.1%、20.3%和8.0%。而且在100 Hz的室温测试条件下,EP/5PES/1Al2O3材料的介电常数和介电损耗分别达到7.6和0.016,较纯环氧树脂均有一定幅度的增加。热重分析(TG)结果表明,EP/5PES/1Al2O3复合材料的初始分解温度为358 ℃,比纯环氧树脂提高了14 ℃,说明热稳定性有较大幅度的提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴唯
陈诗英
宗孟静子
关键词:  纳米氧化铝  聚醚砜  环氧树脂  介电性能  热稳定性能    
Abstract: The nano-Al2O3/polyether sulfone-epoxy resin (EP/5PES/1Al2O3) composites were fabricated and the effects of different nano-Al2O3 and PES addition on the mechanical, dielectric and thermal stability properties of composite were also investigated. The results shows that the tensile strength, elongation at break and impact strength of EP/5PES/1Al2O3 composite arrive at 58 MPa, 13% and 16.2 kJ/m2, respectively, which increase by 61.1%, 20.3% and 8.0% compared to the pure epoxy resin. Additio-nally, the EP/5PES/1Al2O3 composite show higher dielectric constant and dielectric loss of 7.6 and 0.016 (100 Hz) compared with the pure epoxy resin. The thermogravimetric analysis (TG) results shows that the thermal stability of EP/5PES/1Al2O3 composites has been improved and its initial decomposition temperature is improved to 358 ℃, which is 14 ℃ higher than that of the pure epoxy resin, indicating a great improvement to thermal stability of composites.
Key words:  nano-Al2O3    polyether sulfone    epoxy resin    dielectric properties    thermal stability
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TB332  
作者简介:  吴唯:1958年生,教授,博士研究生导师,主要从事新型功能高分子材料及复合材料研究 Tel:021-64250850 E-mail:wuwei@ecust.edu.cn
引用本文:    
吴唯, 陈诗英, 宗孟静子. 纳米Al2O3/聚醚砜-环氧树脂复合材料的介电性能及热稳定性能[J]. 《材料导报》期刊社, 2017, 31(20): 21-24.
WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites. Materials Reports, 2017, 31(20): 21-24.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.005  或          https://www.mater-rep.com/CN/Y2017/V31/I20/21
1 Cao Y M, Sun J, Yu D H. Preparation and properties of nano-Al2O3, particles/polyester/epoxy resin ternary composites[J]. Appl Polym Sci, 2002,83(1):70.
2 Liu W. Preparation and properties of epoxy composite material of high dielectric constant[D]. Mianyang: Southwest University of Science and Technology, 2014(in Chinese).
刘卫. 高介电常数环氧复合材料的制备及性能研究[D]. 绵阳: 西南科技大学, 2014.
3 Wei H. Research of performance and preparation of graphene/epoxy high dielectric permittivity polymer composites[D]. Changchun: Jilin University, 2014(in Chinese).
魏红. 高介电环氧树脂复合材料的制备及性能研究[D]. 长春: 吉林大学, 2014.
4 Yu J, Huo R, Wu C, et al. Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites[J]. Macromol Res, 2012,20(8):816.
5 李冰, 江雄知, 张晓伟. 纳米Al2O3/环氧树脂复合材料的研究进展[C]∥玻璃钢/复合材料学术年会. 广州, 2008:301.
6 Xu D D, Zhu J, Liu Z Y, et al. Thermal stability and insulation strength of nano-Al2O3/epoxy resin composites[J]. China Plastics Ind, 2015(4):87(in Chinese).
徐丹丹, 朱婕, 刘子仪, 等. 纳米Al2O3/环氧树脂复合材料热稳定性及绝缘强度的研究[J]. 塑料工业, 2015(4):87.
7 蒋德意, 赵江涛, 周权, 等. 聚醚砜增韧改性环氧树脂性能研究[C]∥玻璃钢/复合材料学术交流会.武汉,2014:192.
8 Francis B, Thomas S, Thomas S P, et al. Diglycidyl ether of bisphenol-A epoxy resin-polyether sulfone/polyether sulfone ether ketone blends: Phase morphology, fracture toughness and thermo-mechanical properties[J]. Colloid Polym Sci, 2006,285(1):83.
9 Hou Y N. Study on properties of epoxy resin toughed by polyether sulfone[D]. Mianyang: Southwest University of Science and Technology, 2014(in Chinese).9 侯雅楠. 聚醚砜改性环氧树脂的性能研究[D]. 绵阳: 西南科技大学, 2014.
10Chen Y, Yuan G, Xiao Y, et al. Preparation and study on properties of epoxy resin modified by poly(ether sulfone)[C]∥ Strategic Technology (IFOST), 2011 6th International Forum. Harbin, 2011:126.
11Alessi S, Conduruta D, Pitarresi G, et al. Accelerated ageing due to moisture absorption of thermally cured epoxy resin/polyether sulfone blends. Thermal, mechanical and morphological behavior [J]. Polym Degrad Stab, 2011,96(4):642.
12Yu Q Q,Chen G,Chong L,et al. Mechnical properties of high performance epoxy resin toughed by PES[J]. Eng Plastics Appl, 2012,40(9):22(in Chinese).
于倩倩, 陈刚, 崇琳, 等. PES增韧高性能环氧树脂力学性能研究[J]. 工程塑料应用, 2012,40(9):22.
13Chen Y F, Dai Q W, Teng C J, et al. Microstructure and heat-resistance of sce-Al2O3/PES-BMI-BBA-BBE composites[J]. Acta Mater Compos Sin, 2015,32(3):665(in Chinese).
陈宇飞, 代起望, 滕成君, 等. 超临界氧化铝/聚醚砜-BMI-BBA-BBE复合材料的微观结构与耐热性[J]. 复合材料学报, 2015,32(3):665.
14Naganuma Z, Kagawa Z. Effect of particle size on light transmittance of glass particle dispersed epoxy matrix optical composites[J]. Polym Compos, 2001,47(13):4321.
15Neldon J K, Hu Y. The impact of nanocomposite formulations on electrical voltage endurance[C]∥Solid Dielectrics, Proceedings of the 2004 IEEE Internationl Conference. Toulouse, France, 2004:832.
16Bai M Y. Preparation and study on properties of epoxy resin modified by poly(ether-sulfone)/nano-silica[D]. Harbin: Harbin University of Science and Technology(in Chinese).
白孟瑶. 聚醚砜/纳米二氧化硅改性环氧树脂胶黏剂的制备及性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2011.
[1] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[2] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[3] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[4] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[5] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[6] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[7] 周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
[8] 刘圣洁, 曹旭, 张钰林, 傅永腾, 焦晓东. 水性环氧树脂复合改性乳化沥青固化行为及性能研究[J]. 材料导报, 2024, 38(24): 23090085-7.
[9] 孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
[10] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[11] 张鹏伟, 宋惠, 白慧萍, 易剑, 江南, 西村一仁. 太赫兹行波管用金刚石输能窗研究进展[J]. 材料导报, 2024, 38(16): 22120014-9.
[12] 吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
[13] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[14] 王海燕, 咸龙帝, 尚天蓉, 姚佳岐, 燕小斌, 李澜. BT@PANI核壳粒子的绿色制备及PVDF基复合材料的介电性能[J]. 材料导报, 2024, 38(13): 22120173-6.
[15] 于天夫, 李祥, 杨薛明, 胡宗杰, 季畅. 利用聚多巴胺硅烷双重改性氮化硼提高环氧树脂复合材料热物性[J]. 材料导报, 2024, 38(11): 22070092-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed