Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 22120173-6    https://doi.org/10.11896/cldb.22120173
  高分子与聚合物基复合材料 |
BT@PANI核壳粒子的绿色制备及PVDF基复合材料的介电性能
王海燕1,†,*, 咸龙帝1,†, 尚天蓉1, 姚佳岐1, 燕小斌1, 李澜2
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学石油化工学院,兰州 730050
Green Preparation of Core-shell BT@PANI Particles and Dielectric Properties of Poly(vinylidene fluoride)-based Composites
WANG Haiyan1,†,*, XIAN Longdi1,†, SHANG Tianrong1, YAO Jiaqi1, YAN Xiaobin1, LI Lan2
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 16883KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚合物薄膜介电电容器在新能源汽车、太阳能和风力并网发电与储能等领域具有广泛应用和广阔的发展前景。钛酸钡/聚合物复合材料具有介电损耗低、击穿场强高的特点,是电容器中核心部分高介电有机薄膜材料极具潜力的选择之一。目前,迫切需要解决高极化特性与低损耗难以协同改善的问题。本工作提出以苹果酸同时作为钛酸钡(BT)表面修饰剂和聚苯胺(PANI)掺杂剂,采用原位聚合法制备了BT@PANI核壳粒子,并以此为填料制备了聚偏氟乙烯(PVDF)基复合材料。结果显示,通过苹果酸与盐酸的两步表面改性法,可获得钛酸钡-苯胺阳离子(BT-An+)粒子,为此不同苯胺(An)与BT-An+质量比条件下填料产物的核壳结构特征明显。当An与BT-An+的质量比为0.5∶1时产物平均粒径最小,约为450 nm,粒径分布最窄,且电导率为1.46×10-3 S/cm。以此为填料,30%(质量分数)填充量的PVDF基复合材料在103~106 Hz范围内介电常数保持在高值水平,由31仅下降到15,介电损耗在宽的频率范围内低于0.3,不仅表现出优良的频率稳定性,而且在获得较高的介电常数情况下,实现了介电损耗的有效抑制。此外,这项工作极大地降低了无机氧化性酸与有机试剂的使用率,为实现高性能介电复合材料的绿色制备提供了实验指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王海燕
咸龙帝
尚天蓉
姚佳岐
燕小斌
李澜
关键词:  复合电介质  聚合物基体  介电性能  核壳结构  绿色制备    
Abstract: Dielectric capacitors composed of polymer-matrix composite films with high dielectric constants have a practical application and prospect in the fields of new energy vehicles, solar and wind power grid-connected power generation and energy storage and so on. Barium titanate/polymer composites, which present low dielectric loss and high breakdown field strength, are the prospective materials used as the core part of the capacitors. Now, it is urgent to solve the problem of the balanced improvement on high polarizability and low loss. In this work, barium titanate@polyaniline (BT@PANI) core-shell particles were prepared by the in-situ polymerization using malic acid as a surface modification agent for BT particles and a doping agent of PANI. Then polyvinylidene fluoride (PVDF)-based composites were prepared. The results show that barium titanate-aniline cationic particles (BT-An+) was obtained by two-step surface modification of malic acid and hydrochloric acid, and so the core-shell structure character of all products prepared under various mass rations of An and BT is clear. When the mass ratio of An to BT is 0.5∶1, the average particle size is 450 nm and the distribution is the narrowest. and its conductivity value is 1.45×10-3 S/cm. The PVDF-based composite with 30wt% BT@PANI loading has high dielectric constants which vary from 31 to 15 in range of 103—106 Hz. Meanwhile, the dielectric loss remained less than 0.3 within the wide frequency range. The BT@PANI/PVDF composite presents not only good frequency stability but also effective suppression of dielectric loss under the condition of obtaining high dielectric constant. In addition, this work greatly reduces the utilization rate of inorganic oxidizing acids and organic agents and so provides an experimental guidance for green preparation of high performance dielectric composites.
Key words:  composite dielectric    polymer-base    dielectric property    core-shell structure    green preparation
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TB33  
基金资助: 国家自然科学基金(51767016)
通讯作者:  *王海燕,兰州理工大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事先进能源复合电介质材料、超级电容器电极材料等领域的研究工作。发表学术论文40余篇,包括Composites Science and Technology、Journal of Materials Science: Materials in Electronics、Journal of Applied Polymer Science、《高电压技术》等。主持和参与国家自然科学基金项目3项。wanghy03@163.com   
作者简介:  共同第一作者。咸龙帝,2019年6月于滨州学院获得工学学士学位。现为兰州理工大学材料科学与工程学院硕士研究生,在王海燕副教授的指导下进行研究。目前主要研究领域为聚合物基复合电介质材料。
引用本文:    
王海燕, 咸龙帝, 尚天蓉, 姚佳岐, 燕小斌, 李澜. BT@PANI核壳粒子的绿色制备及PVDF基复合材料的介电性能[J]. 材料导报, 2024, 38(13): 22120173-6.
WANG Haiyan, XIAN Longdi, SHANG Tianrong, YAO Jiaqi, YAN Xiaobin, LI Lan. Green Preparation of Core-shell BT@PANI Particles and Dielectric Properties of Poly(vinylidene fluoride)-based Composites. Materials Reports, 2024, 38(13): 22120173-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120173  或          http://www.mater-rep.com/CN/Y2024/V38/I13/22120173
1 Zhang Q, Jiang P K, Huang X Y. Insulating Materials, 2019, 52(4), 1(in Chinese).
张强, 江平开, 黄兴溢. 绝缘材料, 2019, 52(4), 1.
2 Zhang H, Heng T T, Fang Z G, et al. Acta Materiae Compositae Sinica, 2021, 38(7), 2107(in Chinese).
张慧, 衡婷婷, 房正刚, 等. 复合材料学报, 2021, 38(7), 2107.
3 Wu Z Q, Peng Y W, Guo Q, et al. Materials Today Communications, 2022, 32, 103857.
4 Wei J J, Zhu L. Progress in Polymer Science, 2020, 106, 101254.
5 Wang J, Liu S H, Chen C Q, et al. Acta Physica Sinica, 2020, 69(21), 59 (in Chinese).
王娇, 刘少辉, 陈长青, 等. 物理学报, 2020, 69(21), 59.
6 Zhou W Y, Kou Y J, Yuan M X, et al. Composites Science and Technology, 2019, 181, 107686.
7 Wang Y Z, Qu S N, Yin X X. Materials Reports, 2022, 36(4), 209(in Chinese).
汪叶舟, 曲绍宁, 尹训茜. 材料导报, 2022, 36(4), 209.
8 Shang S Y, Tang C Y, Jiang B B. Composites Communications, 2021, 25, 100745.
9 Guan S S, Tang Y K, Song S C, et al. Materials Science and Enginee-ring: B, 2021, 271, 115280.
10 Zhang X H, Ye H J, Xu L X, et al. Applied Surface Science, 2022, 600, 154113.
11 Wang M, Pan X R, Qi X D, et al. Composites Communications, 2020, 21, 100411.
12 Li T, Zhou W Y, Cao D, et al. Modern Plastics Processing and Applications, 2021, 33(1), 60(in Chinese).
李婷, 周文英, 曹丹, 等. 现代塑料加工应用, 2021, 33(1), 60.
13 Phromviyo N, Thongbai P, Maensiri S. Applied Surface Science, 2018, 446, 236.
14 Wang H Y, You Y B, Zha J W, et al. Composites Science and Technology, 2020, 200, 108405.
15 Jiang Y C, Wang J B, Zhang Q L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 576, 55.
16 Zhang Q L, Jiang Y C, Yu E J, et al. Surface and Coatings Technology, 2019, 358, 293.
17 Liu Y J, Zhao X M, Liang T L. Materials Reports, 2016, 30(S2), 304(in Chinese).
刘元军, 赵晓明, 梁腾隆. 材料导报, 2016, 30(S2), 304.
18 Meher D, Suman, Karna N, et al. Polymer, 2019, 181, 121759.
19 Yang R, Wang B, Li M D, et al. Industrial Crops and Products, 2019, 136, 121.
20 Kövilein A, Kubisch C, Cai L Y, et al. Journal of Chemical Technology and Biotechnology, 2020, 95(3), 513.
21 You Y B, Wang H Y, Li L, et al. Journal of Materials Science: Materials in Electronics, 2022, 33, 4268.
22 Zhang Y, Li X L, Lyu L Y, et al. Electronic Components and Materials, 2014, 33(3), 31(in Chinese).
张园, 李小丽, 吕丽云, 等. 电子元件与材料, 2014, 33(3), 31.
23 Zhang R R, Li L L, Long S J, et al. Ceramics International, 2021, 47(15), 22155.
24 Ji W J, Deng H, Guo C, et al. Composites Part A: Applied Science and Manufacturing, 2019, 118, 336.
25 Wang H Y, Zhang X T, Zha J W, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(4), 3325.
26 Sun D D, Huang S J, Gao Y, et al. Journal of Alloys and Compounds, 2019, 783, 256.
[1] 韩坤莹, 门汝佳, 郭美卿, 雷志鹏, 王心雨, 王轶飞, 石志杰. Al2O3@SiO2核壳纳米球添加对聚丙烯介电和空间电荷特性的影响[J]. 材料导报, 2024, 38(6): 22050200-7.
[2] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[3] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[4] 张继生, 米扬, 王艳, 赵磊, 秦甜甜, 孟凡成, 刘国军. 聚(丙烯酸酯-硅氧烷)杂化乳胶粒子的制备及性能[J]. 材料导报, 2023, 37(23): 22060203-6.
[5] 黄贤敏, 李紫薇, 张晓妍, 刘慧, 高红艳, 汪海. 核壳结构的V10O24·12H2O@ACFC:一种高性能对称超级电容器电极材料[J]. 材料导报, 2023, 37(21): 22050088-8.
[6] 宋恩鹏, 靳权, 刘钊, 陈奋华, 蔡克. 自组装烧结法可控合成钛酸钡微纳米陶瓷的效果和适用范围研究[J]. 材料导报, 2023, 37(17): 22010205-6.
[7] 易周, 崔世宇, 罗军明, 初雨轩. 溶胶-凝胶法制备核壳结构MoSi2@Al2O3颗粒及其形成机理[J]. 材料导报, 2023, 37(16): 22010273-6.
[8] 邱汉宇, 刘红晶, 姚辉, 刘雪莉, 高洁. 纳米有机杂化材料(NOHMs)用于CO2捕集的研究进展[J]. 材料导报, 2023, 37(16): 21120114-11.
[9] 苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
[10] 齐致雍, 高凤雨, 唐晓龙, 易红宏, 杜影. 核壳催化剂用于大气污染控制的研究进展[J]. 材料导报, 2023, 37(10): 21060234-12.
[11] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[12] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[13] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[14] 姜超, 华楚侨, 温变英. MOFs基核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2022, 36(16): 21030206-10.
[15] 关嘉怡, 张刚华, 曾涛, 白建峰, 顾卫华. 利用高压手段调控铁电材料结构与性能的研究进展[J]. 材料导报, 2022, 36(12): 20110057-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed