Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 22010273-6    https://doi.org/10.11896/cldb.22010273
  无机非金属及其复合材料 |
溶胶-凝胶法制备核壳结构MoSi2@Al2O3颗粒及其形成机理
易周, 崔世宇, 罗军明*, 初雨轩
南昌航空大学材料科学与工程学院,南昌 330063
MoSi2@Al2O3 Particles with Core-Shell Structure Prepared by Sol-Gel Method and Its Formation Mechanism
YI Zhou, CUI Shiyu, LUO Junming*, CHU Yuxuan
School of Materials Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
下载:  全 文 ( PDF ) ( 5384KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热应力和氧化生长层会导致热障涂层(TBCs)中微裂纹的萌生和扩展。MoSi2被选为下一代自愈合因子,因为它改善了SiO2的流动性,并在高温下加速了内部裂缝的愈合。本研究采用溶胶-凝胶法实现MoSi2@Al2O3核壳结构,可提高MoSi2在氧化性气氛下的抗预氧化性能。选择异丙醇铝作为铝源,通过正交试验研究了温度、pH值和水铝比对增重的影响,得到了最佳参数。通过XRD、SEM、EDS和TEM方法分析了后处理的影响(包括相组成和微观结构)。结果表明,90 ℃、pH=4 和水铝比 200 的组合是最佳参数。壳层增重最高可达22%。因为可以改变 MoSi2表面的Zeta电位,所以pH值在增重上占据主导地位。在真空炉中热处理3 h后,在1 200 ℃下得到最大厚度(约200 nm)的α-Al2O3壳层。为避免MoSi2的预氧化,后处理应在真空气氛中进行。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
易周
崔世宇
罗军明
初雨轩
关键词:  溶胶-凝胶  核壳结构  热处理    
Abstract: Thermal stress and growth oxide layers induce initiation and propagation of the micro-cracks in the thermal barrier coatings (TBCs). MoSi2 is selected as the next generation of healing agent because it improves the fluidity of SiO2 and accelerates the healing of cracks inside at high temperatures. In this study, the sol-gel method was used to achieve MoSi2@Al2O3 core-shell structure which can improve the pre-oxidation resistance of MoSi2 in oxygen conditions. Aluminum isopropoxide has been selected as the aluminum source. The effects of temperature, pH value, and water-to-aluminum ratio on weight gain were investigated by orthogonal experiments to obtain the optimal parameters. The influence of post-treatment (including phase compositions and microstructures) was analyzed by XRD, SEM, EDS, and TEM methods. We concluded that the combination of 90 ℃, pH=4, and the water-to-aluminum ratio of 200 were optimal parameters. The weight gain of the shell layer can achieve the highest level of 22%. The pH value dominates the weight gain because it changes the Zeta potential of the MoSi2 surface. After 3 hours of heat treatment in the vacuum furnace, the maximum thickness (around 200 nm) of α-Al2O3 shell layer is obtained at 1 200 ℃. To avoid the pre-oxidation of MoSi2, the post-treatment should be operated in a vacuum atmosphere.
Key words:  sol-gel    core-shell structure    heat treatment
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TG15  
基金资助: 国家自然科学基金(52104361)
通讯作者:  *罗军明,教授,博士,江西省百千万人才工程人选,江西省中青年骨干教师,全国热处理学会常务理事,江西省热处理学会理事长,江西省机械工程学会常务理事。主要从事金属基复合材料、粉末冶金材料、稀土材料、材料热处理及表面处理等研究。主持和参加科研项目50项,发表论文100余篇,其中SCI、EI收录80余篇。ljmniat@126.com   
作者简介:  易周,2020年6月于江西理工大学获得工学学士学位。现为南昌航空大学材料学院硕士研究生,在罗军明教授指导下进行研究。目前主要研究领域为核壳结构粉末制备。
引用本文:    
易周, 崔世宇, 罗军明, 初雨轩. 溶胶-凝胶法制备核壳结构MoSi2@Al2O3颗粒及其形成机理[J]. 材料导报, 2023, 37(16): 22010273-6.
YI Zhou, CUI Shiyu, LUO Junming, CHU Yuxuan. MoSi2@Al2O3 Particles with Core-Shell Structure Prepared by Sol-Gel Method and Its Formation Mechanism. Materials Reports, 2023, 37(16): 22010273-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010273  或          http://www.mater-rep.com/CN/Y2023/V37/I16/22010273
1 Hua J J, Zhang L P, Liu Z W, et al. Journal of Inorganic Materials, 2012, 27(7), 680 (in Chinese).
华佳捷,张丽鹏,刘紫微,等.无机材料学报 , 2012, 27(7), 680.
2 Ann-Sophie Farle, Cees Kwakernaak, Sybrand van der Zwaag, et al. Journal of the European Ceramic Society, 2015, 35(1), 37.
3 Ouyang T Y. Preparation, propertices and application of the self-healing oxidation resisting TBC. Ph.D. Thesis. University of Science and Techno-logy, China, 2016 (in Chinese).
欧阳韬源. 自愈合抗氧化热障涂层的制备、性能及其应用研究. 博士学位论文. 华中科技大学, 2016.
4 Justyna Kulczyk-Malecka, Xun Zhang, James Carr, et al. Journal of the European Ceramic Society, 2018, 38(12), 4268.
5 Feng P Z, Wang X H, Jia Z Y et al. Transactions of Materials and Heat Treatment, 2008(1), 24 (in Chinese).
冯培忠, 王晓虹, 贾志勇,等. 材料热处理学报, 2008(1), 24.
6 Van D Z S, Van D N H, Jonkers H, et al.Philosophical Transactions of the Royal Society A, 2009, 367(1894), 1689.
7 Westbrook J H, Wood D L.Journal of Nuclear Materials, 1964, 12(2),208.
8 Mckamey C G, Tortorelli P F, Devan J H, et al.Journal of Materials Research, 1992, 7, 2747.
9 Liu Y, Shao G, Tsakiropoulos P.Intermetallics, 2001, 9(2), 125.
10 Wang P, Xiong X, Min X B, et al.Mining and Metallurgical Engineering, 2013, 33(2), 108 (in chinese).
王平, 熊翔, 闵小兵, 等. 矿冶工程, 2013, 33(2), 108.
11 Mark Johan Meijerink. Coating of MoSi2 healing particles for self-healing thermal barrier coatings. Master's Thesis, Delft University of Technology, Netherlands, 2015.
12 Guoping Bei,Sybrand van der Zwaag,Sanklap Kota,et al. Journal of the European Ceramic Society, 2019, 39(6), 2010.
13 Yang H F, Yang G C, Qiao Z Q, et al.Shandong Chemical Industry, 2019, 48(8), 58 (in Chinese).
杨海峰, 杨光城, 谯志强,等. 山东化工, 2019, 48(8), 58.
14 Liu Y F, Zhu Y W, Liu P, et.al.China Surface Engineering, 2012,25(2), 97.
刘蕴锋,朱永伟,刘平,等. 中国表面工程, 2012, 25(2), 97.
15 Guo J. The Synthesis and phase change prorerties of Al-Si/Al2O3 core-shell micro-particles. Master's Thesis, Harbin Institute of Technology, China, 2012 (in chinese).
郭军. Al-Si/Al2O3核壳结构粒子的制备及其相变特性研究. 硕士学位论文, 哈尔滨工业大学, 2012.
16 Chen Y, Zhang X, van der Zwaag S, et al.Journal of the American Ceramic Society, 2019,102(8), 4899.
17 Liu B, Zhuang Z Q, Liu Y et al. China Ceramic Industry, 2004(1), 50 (in Chinese).
刘波, 庄志强, 刘勇,等. 中国陶瓷工业, 2004(1), 50.
18 Xia W W. Preparation of aluminum oxide thin films by sol-gel process and application in teansistors. Master's Thesis, Shandong University, China, 2018 (in Chinese).
夏雯雯. 氧化铝薄膜的溶胶凝胶制备及晶体管应用. 硕士学位论文, 山东大学, 2018.
19 Wang J, Li C, Xu B, et al.Chemical Industry and Engineering, 2009, 26(3), 273, (in Chinese).
王焆, 李晨, 徐博,等. 化学工业与工程, 2009, 26(3), 273.
20 Peng C S, Zhang Q, Xu X Y, et al.Periodical of Ocean University of China, 2010, 40(10), 121, (in Chinese).
彭昌盛, 张倩, 徐兴永,等. 中国海洋大学学报(自然科学版), 2010, 40(10), 121.
21 Liu P. Dispersion behavior of fien particles in electroless nickel solution.Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2015 (in chinese).
刘平. 化学镀液中微细颗粒的分散行为. 博士学位论文, 南京航空航天大学, 2015.
22 Wu X R, Jia Z J, Ma H Y, et al.Energy Storage Science and Technology, 2013, 2(2), 152 (in Chinese).
吴旭冉, 贾志军, 马洪运,等. 储能科学与技术, 2013, 2(2), 152.
23 Ren X M.Chinese Journal of Colloid & Polymer, 2017, 35(2), 74 (in Chinese).
任小明. 胶体与聚合物, 2017,35(2), 74.
24 Duan N, Zhang X T, Lu C L, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(9),3105 (in Chinese).
段宁, 张湘泰, 陆成龙,等 .硅酸盐通报, 2021,40(9), 3105.
25 Wu Y F.World Nonferrous Metals, 2020(4), 9 (in Chinese).
吴永峰. 世界有色金属, 2020(4), 9.
26 Huang P Y.Powder metallurgy principle, China Machine Press,China, 2012, pp. 79 (in Chinese)
黄培云. 粉末冶金原理, 中国机械出版社, 2012, pp. 79.
27 Chen M Q, He J J, Zhang Y L, et al. Chinese Journal of Rare Metals, 2018, 42(4), 402 (in Chinese).
陈淼琴, 何金江, 张玉利, 等. 稀有金属, 2018, 42(4), 402.
[1] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[2] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[3] 邱汉宇, 刘红晶, 姚辉, 刘雪莉, 高洁. 纳米有机杂化材料(NOHMs)用于CO2捕集的研究进展[J]. 材料导报, 2023, 37(16): 21120114-11.
[4] 刘卫东, 米国发, 李雷, 陈晓文, 潘雨佳, 翟芳艺, 苗浩伟. 辅助处理对激光熔覆层组织和性能影响的研究进展[J]. 材料导报, 2023, 37(15): 21120139-7.
[5] 孙建, 黄贞益, 李景辉, 王萍, 章小峰. Fe-Mn-Al-C系低密度钢热处理研究进展[J]. 材料导报, 2023, 37(14): 22010032-12.
[6] 吴佳洪, 王文广, 倪丁瑞, 肖伯律, 李荣德, 林楠, 武秋生, 夏津. TiB2纳米涂层改性碳纤维增强Mg基复合材料的微观结构及力学性能[J]. 材料导报, 2023, 37(14): 22030117-6.
[7] 万伟, 朱永昌, 张行泉, 崔竹, 杨德博, 焦云杰, 霍冀川, 孟保健. MoO3含量对钙钛锆石基硼硅酸盐玻璃陶瓷的影响[J]. 材料导报, 2023, 37(13): 21080150-6.
[8] 张道琦, 张林, 郭晓, 王恩刚. Cu-Ag高强高导合金的研究现状与进展[J]. 材料导报, 2023, 37(13): 21040152-6.
[9] 苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
[10] 齐致雍, 高凤雨, 唐晓龙, 易红宏, 杜影. 核壳催化剂用于大气污染控制的研究进展[J]. 材料导报, 2023, 37(10): 21060234-12.
[11] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[12] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[13] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[14] 仉建波, 李京桉, 彭远祎, 夏兴川, 刘畅, 丁俭, 陈学广, 刘永长. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 20050167-8.
[15] 徐英卓, 王秀凯, 常麟晖, 陈步明, 黄惠, 何亚鹏, 郭忠诚. 热处理对大变形量Zn-1.65Cu-0.15Ti合金的组织和性能的影响[J]. 材料导报, 2022, 36(23): 21030294-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed