Reviews on the Study of Microstructure and Properties of ATI 718Plus Superalloy
ZHANG Jianbo1, LI Jing'an1, PENG Yuanyi1, XIA Xingchuan1,2,*, LIU Chang1, DING Jian1, CHEN Xueguang1, LIU Yongchang2
1 School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China 2 School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
摘要 ATI 718Plus(以下简称718Plus)是一种基于IN718高温合金改进的时效强化型镍基变形高温合金,已广泛应用于航空发动机的热端零部件。合金最初以锻造态引入,随着航空航天领域对大型复杂零部件需求的提高,锻造态合金已不能满足实际要求,因此在锻造态合金的基础上通过提高Nb含量开发出了铸造718Plus合金,并对其微观组织、焊接性能和拉伸性能开展了研究。锻造态和铸造态合金的化学成分与成型工艺的差异导致其微观组织及性能不同,因此阐明两种合金微观组织与使役性能之间的内在联系具有重要意义。本文综述了近年来锻造态和铸造态718Plus合金的微观组织调控及性能研究进展,包括:元素含量与分布状态对合金微观组织的影响,热处理制度对γ'相及η相分布状态的影响,热变形工艺与合金微观组织的关系,并得到最优热加工参数,总结了服役环境对合金蠕变、疲劳、焊接及抗氧化性能的作用机制,最后分析了合金研究过程中存在的问题及发展趋势。
Abstract: ATI 718Plus (hereafter referred to as 718Plus) is an age-strengthened nickel-based wrought superalloy according to the improved IN718 superalloy, which has been widely used in hot end components for aero engines. The alloy originally introduced in the wrought state, as the demand for large and complex components in the aerospace sector increased, the wrought alloy could no longer meet the practical requirements, so the cast 718Plus alloy was developed by increasing the Nb content based on the wrought alloy and its microstructure, welding properties and tensile properties were investigated. The chemical composition and forming process of as-wrought and as-cast alloys lead to different microstructures and properties, and it is important to clarify the internal relationship between microstructure and properties of the two alloys. This paper reviews the progress of microstructure control and properties of the wrought and cast 718Plus alloys in recent years, including the influence of element contents and distribution state on the microstructure of the alloys, the function of heat treatment regime on the distribution state of γ' and η phases, and the relationship between hot deformation process and the microstructure of the alloys. As a result, the optimum hot processing parameters are obtained, the mechanism of service environment on creep, fatigue, welding and oxidation resistance of alloy is summarized, and the problems and development trend in the process of alloy research are analyzed eventually.
仉建波, 李京桉, 彭远祎, 夏兴川, 刘畅, 丁俭, 陈学广, 刘永长. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 20050167-8.
ZHANG Jianbo, LI Jing'an, PENG Yuanyi, XIA Xingchuan, LIU Chang, DING Jian, CHEN Xueguang, LIU Yongchang. Reviews on the Study of Microstructure and Properties of ATI 718Plus Superalloy. Materials Reports, 2022, 36(4): 20050167-8.
1 Huang Q Y, Li H K.Superalloy, Metallurgical Industry Press, China, 2000,pp.6(in Chinese). 黄乾尧, 李汉康. 高温合金, 冶金工业出版社, 2000, pp. 6. 2 Ding J, Jiang S, Li Y, et al. Intermetallics, 2018, 98, 28. 3 Wu J, Liu Y C, Li C, et al. Intermetallics, 2019, 109, 48. 4 Wu J, Liu Y C, Li C, et al. Acta Metalica Sinica, 2020, 56 (1), 21(in Chinese). 吴静, 刘永长, 李冲, 等. 金属学报, 2020, 56(1), 21. 5 Wang M Q, Tian C G, Nan Y, et al. Materials Reports A:Review Papers, 2017, 31(10), 72(in Chinese). 王妙全, 田成刚, 南洋, 等. 材料导报:综述篇, 2017, 31(10), 72. 6 Du J H, Zhao G P, Deng Q, et al. Journal of Aeronautical Materials, 2016, 36 (3), 27(in Chinese). 杜金辉,赵光普,邓群,等. 航空材料学报, 2016, 36(3), 27. 7 Wang M Q. In: High Temperature Materials Branch of China Metal Society. Beijing, 2015, pp.42(in Chinese). 王民庆. 中国金属学会高温材料分会. 北京, 2015, pp. 42. 8 Wang M Q, Deng Q, Du J H, et al. Rare Metal Materials and Enginee-ring, 2016, 45(12), 3335(in Chinese). 王民庆, 邓群, 杜金辉, 等. 稀有金属材料与工程, 2016, 45(12), 3335. 9 Ruiz O C, Sjöberg G, Gómez-Acebo T, et al. Superalloy 718 and Derivatives, 2012, pp.689. 10 Peterson B, Krishnan V, Brayshaw D, et al. In: Proceedings of the 7th International Symposium on Superalloy. USA, 2010, pp. 132. 11 Peterson B, Frias D, Brayshaw D, et al. In: Proceedings of the 7th International Symposium on Superalloy. USA, 2010, pp. 787. 12 Zickler G A, Schnitzer R, Radis R, et al. Materials Science and Engineering A, 2009, 523(1-2), 295. 13 Wang M, Du J, Deng, Q, et al. Journal of Alloys and Compounds, 2017, 701, 635. 14 Pickering E J, Mathur H, Bhowmik A, et al. Acta Materialia, 2012, 60(7), 2757. 15 Eurich N C, Bristowe P D. Scripta Materialia, 2014, 77, 37. 16 Stotter C, Sommitsch C, Wagner J, et al. International Journal of Mate-rials Research, 2008, 99(4), 376. 17 Lech S, Kruk A, Rutkowski B, et al. In: European Microscopy Congress: Proceedings, Wiley-VCH Verlag GmbH & Co. KGaA, 2016, pp. 1122. 18 Zickler G A, Radis R, Schnitzer R, et al. Advanced Engineering Mate-rials, 2010, 12(3), 176. 19 Alabbad B, Tin S.Materials Characterization, 2019, 151, 53. 20 Burke M G, Miller M K. In:Superalloys 718.USA, 1991, pp. 450. 21 Krakow R, Johnstone D N, Eggeman A S, et al. Acta Materialia, 2017, 130, 271. 22 Lech S, Kruk A, Cempura G, et al. Journal of Materials Engineering and Performance, 2020, 29(3), 1453. 23 Decker R F, Freeman J W.Transactions of the American Institute of Mining and Metallurgical Engineers, 1957, 218(2), 277. 24 Hosseini S A, Abbasi, S M, Madar K Z, et al. Materials Chemistry and Physics, 2018, 211, 302. 25 Seyed A H, Seyed M A, Karim Z M, et al. Materials Science and Engineering A, 2018, 712, 780. 26 Wang M, Du J, Deng Q, et al. Materials Science and Engineering A, 2015, 626, 382. 27 Wang M, Deng Q, Du, J, et al. Materials Transactions, 2015, 56(5), 635. 28 Cao W D. In: Superalloy 718 and Derivatives. USA, 2004, pp. 92. 29 Mcdevitt E. In: Superalloy 718 and Derivatives. USA, 2012, pp. 981. 30 Liu X,Xu J, Deem N, et al. Delta, 2005, 10, 100. 31 Kumari G, Boehlert C, Sankaran S, et al. Journal of Materials Enginee-ring and Performance, 2020, 29(6), 3523.. 32 Whitmore L, Ahmadi M R, Stockinger M, et al. Materials Science and Engineering A, 2014, 594 (31), 253. 33 Whitmore L, Ahmadi M R, Guetaz L, et al. Materials Science and Enginee-ring A, 2014, 610(29), 39. 34 Whitmore L, Leitner H, Povoden-Karadeniz E, et al. Materials Science and Engineering A, 2012, 534, 413. 35 Zhao W, Dong J X, Zhang M C, et al. Journal of Material Heat Treatment, 2015(1), 5(in Chinese). 赵薇, 董建新, 张麦仓, 等.材料热处理学报, 2015(1), 5. 36 Ahmadi M R, Povoden E, Whitmore L, et al. Materials Science and Engineering A, 2014, 608, 114. 37 Li Y, Li C, Wu J, et al. Materials Letters, 2019, 250, 147. 38 Ding J, Jiang S, Wu Y, et al. Materials Letters, 2018, 211, 5. 39 Wu Y, Liu Y, Li C, et al. Journal of Alloys and Compounds, 2017, 712, 6875. 40 Shi X N, Liu Y Y, Ning Y Q, et al. Rare Metals, 2019(6), 613(in Chinese). 史晓楠, 刘莹莹, 宁永权,等.稀有金属, 2019(6), 613. 41 Chen X, Qi Y G, Shi X N, et al. Rare Metals, 2019,43(12), 1260(in Chinese). 陈曦, 亓耀国, 史晓楠, 等. 稀有金属, 2019,43(12), 1260. 42 Stefan M, Christof S, Daniel H, et al. Materials Science and Engineering A, 2011, 528(11), 3754. 43 Kienl C, León-Cázares F D, Rae C M F, et al. Acta Materialia, 2020, 115473. 44 Kienl C, Casanova A, Messé O, et al. In:Proceedings of the 9th International Symposium on Superalloy 718 and Derivatives: Energy, Aerospace, and Industrial Applications. Morgantown, 2018, pp. 413. 45 Asala G, Andersson J, Ojo O A, et al. International Journal of Advanced Manufacturing Technology, 2019, 103(1), 1419. 46 Zhang J B, Wu C J, Peng Y Y, et al. Journal of Alloys and Compounds, 2020,835, 155195. 47 Asala G, Ojo O A.Results in Physics, 2016, 6, 196. 48 Idowu O A, Ojo O A, Chaturvedi M C, et al. Materials Science & Engineering A, 2007, 454-455, 389. 49 Ni T, Dong J.Materials Science and Engineering: A, 2017, 700, 406. 50 Hayes R W, Unocic R R, Nasrollahzadeh M.Metallurgical and Materials Transactions A, 2015, 46(1), 218. 51 Chen K, Dong J, Yao Z, et al. Materials Science and Engineering: A, 2018, 738, 308. 52 Telesman J, Gabb T, Garg A, et al. In: Superalloy 718 and Derivatives. USA, 2008, pp.813. 53 Tsang J, Kearsey R M, Au P, et al. Materials at High Temperatures, 2010, 27(1),207. 54 Kattoura M, Mannava S R, Qian D, et al. International Journal of Fatigue, 2017, 104, 366. 55 Kattoura M, Telang A, Mannava S R, et al. Materials Science and Engineering A, 2018, 711, 364. 56 Unocic K A, Unocic R R, Pint B A, et al. In: Superalloy 718 and Deri-vatives, John Wiley & Sons Ltd., USA,2010, pp. 981. 57 Unocic K A, Pint B A. In: 8th International Symposium on Superalloy 718 and Derivatives. USA, 2014,pp. 671. 58 Li T F.High temperature oxidation and hot corrosion of metals, Chemical Industry Press, China, 2003,pp.71(in Chinese). 李铁藩. 金属高温氧化和热腐蚀. 化学工业出版社,2003, pp. 71. 59 Huang J P. High temperature oxidation behavior of Ni-10Cr-5Al alloy containing rare earth elements. Master's Thesis, Jiangxi University of technology, China, 2017(in Chinese). 黄嘉鹏. 含稀土元素Ni-10Cr-5Al合金高温氧化行为研究. 硕士学位论文, 江西理工大学, 2017. 60 Lech S, Gil A, Cempura G, et al. International Journal of Materials Research, 2019, 110(1), 42. 61 Kruk A, Lech S, Gil A, et al. Corrosion Science, 2020, 169, 108634. 62 Viskari L, Hörnqvist M, Moore K L, et al. Acta Materialia, 2013, 61(10), 3630. 63 Hanning F, Khan A K, Andersson J, et al. Welding in the World, 2020, 64(3), 523. 64 Chen K, Rui S Y, Wang F, et al. International Journal of Minerals Metallurgy and Materials, 2019, 26(7), 889. 65 Andersson J, Sjöberg G, Larsson J, et al. In: Superalloy 718 and Derivatives, John Wiley & Sons Ltd., USA, 2010, pp. 439. 66 Seyed A H, Karim Z M, Seyed M A, et al. Materials Science and Engineering A, 2017, 689, 103. 67 Ruiz O C, Soldevilla N. In: 8th International Symposium on Superalloy 718 and Derivatives. John Wileyand Sons Ltd., Pittsburgh, Pennsylvania, USA, 2014, pp. 220. 68 Andersson J, Sjöberg G, Larsson J. In: Proceedings of the 7th International Symposiumon Superalloy 718 and Derivatives, TMS (The Minerals, Metalsand Materials Society), 2010, pp.439. 69 Hosseini S A, Abbasi S M, Madar K Z, et al. Journal of Materials Engineering and Performance, 2018, 27(6), 2815. 70 Andersson J, Sjöberg G, Hönninen H. In: the 3rd International Hot Cracking Workshop. Columbus, Ohio, 2010,pp. 417. 71 Woo I, Nishimoto K, Tanaka K, et al. Welding in the World, 2000, 14(7), 514. 72 Singh S, Andersson J. Welding in the World, 2018, 63(2), 389.