Please wait a minute...
材料导报  2018, Vol. 32 Issue (13): 2167-2175    https://doi.org/10.11896/j.issn.1005-023X.2018.13.005
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
650 ℃第三代超超临界锅炉管候选钢种的化学成分研究现状
文新理1, 章清泉1, 陈列2
1 北京北冶功能材料有限公司,北京 100192;
2 西宁特殊钢股份有限公司,西宁 810000
A State-of-the-art Review of Chemical Component Study of theCandidate Steel for 650 ℃ Ultra-supercritical Boiler Tube
WEN Xinli1, ZHANG Qingquan1, CHEN Lie2
1 Beijing Beiye Functional Materials Corporation, Beijing 100192;
2 Xining Special Steel Co. Ltd., Xining 810000
下载:  全 文 ( PDF ) ( 3448KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 据最新统计数据,截至2016年底,我国火力发电量占总发电量的71.60%,火力发电的装机容量占总发电装机容量的64.04%。在总发电量中,水力发电量占比不足20%,核能、风能和太阳能发电量之和占比不足10%,因此,火力发电仍然是我国电力能源的支柱。然而,随着人们环保意识的日益加强,低效率、高排放、重污染的传统发电技术已不能满足发电产业健康、可持续发展的需要。超超临界发电技术作为一种高效率、低排放、低污染的新型先进发电技术,其应用将日益广泛。   在工程热力学中,水的临界点参数是22.115 MPa和374.15 ℃,在此参数之上为均匀的单相流体水,这种状态称为超临界状态,在此参数之上运行的机组称为超临界机组。超超临界在物理上并没有明确的对应参数点,对于超超临界机组,各国并没有统一的定义,国内普遍认为当蒸汽压力不小于27 MPa或温度不低于580 ℃时,即可称为超超临界机组。650 ℃超超临界技术是目前我国和世界发达国家竞相研究和发展的先进燃煤发电技术,其主蒸汽温度高达650 ℃、主蒸汽压力高达35 MPa,该技术的关键是主蒸汽锅炉管用钢的研发,要求钢种能够承受650 ℃、35 MPa主蒸汽的高温、高压和腐蚀作用,其研究焦点集中在化学成分的设计上。   目前日本和中国已分别独立开发出了各自的成分体系,并研制出了原型钢。日本国立物质材料研究所(简称NIMS)开发出了9Cr-3W-3CoVNbBN钢(代号为MARBN),日本新日铁住金公司开发出了9Cr-3W-3CoNdVNbBN钢(代号为SAVE12AD),我国钢铁研究总院和宝钢开发出了9Cr-2.8W-3CoCuVNbBN钢(代号为G115)。但以上三种钢的工艺性能和使用性能仍处于试验评价阶段,配套焊材和焊接技术也还在研发中。从世界范围看,650 ℃超超临界锅炉管已有多个不同成分体系的候选钢种,但不同钢种之间的成分差别较大,各开发者对不同化学元素作用的认识也不尽相同,究竟哪一种成分体系是最佳选择并没有明确的定论。   本文综述了目前世界上关于650 ℃超超临界锅炉管候选钢种化学成分的研究现状,分析了钢中化学元素B、N、C、W、Ta、Nd、Co等的作用机理,阐述了化学元素对基体组织、碳化物和高温蠕变性能等的影响。针对650 ℃超超临界锅炉管用钢的关键技术瓶颈——配套焊材和焊接技术,从焊接性能的角度指出焊材化学成分设计应与管材基体化学成分有益配合,避免二者微量元素的不良结合引起焊接性能劣化,明确了焊材开发中应注意的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
文新理
章清泉
陈列
关键词:  650℃超超临界  锅炉管  化学成分  焊接性能  焊材开发    
Abstract: According to the latest statistics, by the end of 2016, 71.60% of total power generation capacity in China was produced by thermal power, 64.04% of the total installed capacity in China was contributed by thermal power. Water power in China accounted less than 20% of total power production; nuclear power, wind power and solar power accounted less than 10%. Apparently, thermal power is the backbone of electrical energy in China. Nevertheless, owing to the increasing appeal for environment protection, the traditional power generation technology with low efficiency, high emission and high pollution can’t meet the healthy and sustainable development of power generation industry. While as a new technology with high efficiency, low emission and low pollution, ultra-supercritical power generation technology has aroused great attention and been widely studied.    In engineering thermodynamics, the critical parameters of water is 22.115 MPa and 374.15 ℃. Above this parameter, water presents single-phase fluid which is called super critical state. Super critical generator is thermal power generator which serves under the condition of above 22.115 MPa and 374.15 ℃. There is no specific parameter in physics for ultra-supercri-tical state, and there is also no unified definition for ultra-supercritical generator. It is universally recognized the generator can be called ultra-super critical generator when it served under the steam pressure of above 27 MPa or the steam temperature of above 580 ℃. 650 ℃ ultra-supercri-tical technology is an advanced coal-fired power generation technology which has been competitively studied worldwide. The working condition are steam temperature of 650 ℃ and pressure of 35 MPa. The core technology of 650 ℃ ultra-supercritical power generator is the steel used for main steam boiler tube, which is required to suffer the 650 ℃, 35 MPa steam. The researches of this kind of steel mainly focus on the chemical component design.    Up to now, Japan and China has developed their own chemical component system and produced their original steel independently. The steel deve-loped by National Institute for Materials Science of Japan is named MARBN(9Cr-3W-3CoVNbBN), the steel developed by Nippon Steel & Sumitomo Metal Corporation is named SAVE12AD(9Cr-3W-3CoNdVNbBN), and the steel developed by Iron and Steel Research Institute is named G115(9Cr-2.8W-3CoCuVNbBN). However, the processing property and working perfor-mance of the three kinds of steels are still under experimental evaluation, and the matched welding material and welding technique are in development as well. Currently, there are several candidate steels with different chemical components for 650 ℃ ultra-supercritical boiler tube. Different developers have different understandings of the effects caused by various elements, and there is no consensus yet on the best chemical components.   The research progress in chemical components of the candidate steel used for 650 ℃ ultra-supercritical boiler tube is summarized in this article. The action mechanisms of chemical elements such as B, N, C, W, Ta, Nd, Co are analyzed, and the effects of the elements on the matrix structure, carbides, creep property and so forth are elaborated. In view of welding property, it is pointed out that the chemical component of the welding materials should be matched with the tube steel, the welding property degeneration should be avoided. The problems which should be paid attention to during welding materials development are clarified.
Key words:  650 ℃ ultra-supercritical    boiler tube    chemical component    welding property    welding materials development
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  TG142.1  
基金资助: 国家“863计划项目”(2012AA03A502)
作者简介:  文新理:男,1983年生,博士,主要从事特种用途先进高温合金、镍基耐蚀合金、特殊钢等新材料新工艺研发、质量控制与应用技术研究 E-mail:wen.xinli@163.com
引用本文:    
文新理, 章清泉, 陈列. 650 ℃第三代超超临界锅炉管候选钢种的化学成分研究现状[J]. 材料导报, 2018, 32(13): 2167-2175.
WEN Xinli, ZHANG Qingquan, CHEN Lie. A State-of-the-art Review of Chemical Component Study of theCandidate Steel for 650 ℃ Ultra-supercritical Boiler Tube. Materials Reports, 2018, 32(13): 2167-2175.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.005  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2167
1 Liu Zhengdong, Cheng Shichang, Gan Yong, et al. Research and development of advanced boiler steel tubes and pipes used for 600 ℃ USC power plants in China[J].Iron and Steel,2010(10):1(in Chinese).
刘正东,程世长,干勇,等.中国600 ℃蒸汽参数火电机组用锅炉钢管国产化研制进展[J].钢铁,2010(10):1.
2 Liu Zhengdong. Challenges to the critical steel technology in the course of the development of Chinese energy industries[J].Special Steel Technology,2010,16(1):1(in Chinese).
刘正东.中国能源工业发展对钢铁材料技术的挑战[J].特钢技术,2010,16(1):1.
3 Ning Baoqun. Research on phase transformation behaviors of modified high Cr ferritic heat-resistant steels[D].Tianjin: Tianjin University,2007(in Chinese).
宁保群.T91铁素体耐热钢相变过程及强化工艺[D].天津:天津大学,2007.
4 Liu Zhengdong, Cheng Shichang, Bao Hansheng, et al. Localization of boiler steel technology in China used for ultra super critical power plants[J].Iron and Steel,2009,44(6):1(in Chinese).
刘正东,程世长,包汉生,等.超超临界火电机组用锅炉钢技术国产化问题[J].钢铁,2009,44(6):1.
5 刘正东,包汉生,徐松乾,等.G115耐热钢应用于超600 ℃超超临界火电机组[J].世界金属导报,2015(B2):1.
6 Liu Z, Bao H, Xu S, et al. The development of boiler pipes used for 700 ℃ A-USC-PP in China[M]∥Energy Materials 2014. Springer, Cham,2014:103.
7 Abe F. Analysis of creep rates of tempered martensitic 9% Cr steel based on microstructure evolution[J].Materials Science and Engineering A,2009,510:64.
8 Chatterjee A, Dutta A, Sk M B, et al. Effect of microalloy precipitates on the microstructure and texture of hot-deformed modified 9Cr-1Mo steel[J].Metallurgical and Materials Transactions A,2017,48(5):2410.
9 Liu Y, Tsukamoto S, Sawada K, et al. Precipitation behavior in the heat-affected zone of boron-added 9Cr-3W-3Co steel during post-weld heat treatment and creep deformation[J].Metallurgical and Materials Transactions A,2015,46(5):1843.
10 Kobayashi S, Kimura K, Tsuzaki K. Interphase precipitation of Fe2Hf Laves phase in a Fe-9Cr/Fe-9Cr-Hf diffusion couple[J].Intermetallics,2014,46:80.
11 Prat O, García J, Rojas D, et al. Study of nucleation, growth and coarsening of precipitates in a novel 9% Cr heat resistant steel: Experimental and modeling[J].Materials Chemistry and Physics,2014,143(2):754.
12 Abe F. Effect of boron on microstructure and creep strength of advanced ferritic power plant steels[J].Procedia Engineering,2011,10:94.
13 Abe F, Horiuchi T, Taneike M, et al. Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature[J].Materials Science and Engineering A,2004,378(1):299.
14 Horiuchi T, Igarashi M, Abe F. Improved utilization of added B in 9Cr heat-resistant steels containing W[J].ISIJ International,2002,42:S67.
15 Sakuraya T, Okada H, Abe F. BN type inclusions formed in high Cr ferritic heat resistant steel[J].Tetsu-to-Hagane,2004,90:819.
16 Borlera M L, Pradelli G. Solid equilibri dello stato nel sistema Fe-BC (Solid state equilibria in the system Fe-BC)[J].Metallurgia Italiana,1967,59:907.
17 Karlson L, Norden H, Odelius H. Non-equilibrium grain boundary segregation of boron in austenitic stainless steel-Ⅰ. Large Scale segregation behavior[J].Acta Metallurgica,1988,36:1.
18 Karlsson L, Norden H. Overview No. 63 non-equilibrium grain boundary segregation of boron in austenitic stainless steel-Ⅱ. Fine scale segregation behaviour[J].Acta Metallurgica,1988,36(1):13.
19 Abe F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants[J].Science and Technology of Advanced Materials,2008,9(1):013002.
20 Abe F, Tabuchi M, Kondo M, et al. Suppression of type Ⅳ fracture and improvement of creep strength of 9Cr steel welded joints by boron addition[J].International Journal of Pressure Vessels and Pi-ping,2007,84(1):44.
21 Abe F. Evolution of microstructure and acceleration of creep rate in tempered martensitic 9Cr-W steels[J].Materials Science and Engineering A,1997,234:1045.
22 Abe F. Bainitic and martensitic creep-resistant steels[J].Current Opinion in Solid State and Materials Science,2004,8(3):305.
23 伊勢田敦朗,吉澤満,岡田浩一,等.次世代ボイラ用9Cr鋼管SAVE12ADの開発[C]∥火力原子力発電大会論文集.新潟,2016:49.
24 Abe F. Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels[J].Materials Science and Engineering A,2001,319:770.
25 Abe F. Strengthening mechanisms in creep of advanced ferritic power plant steels based on creep deformation analysis[M]∥Advanced Steels. Springer Berlin Heidelberg,2011:409.
26 Abe F, Kutsumi H, Haruyama H, et al. Improvement of oxidation resistance of 9 mass% chromium steel for advanced-ultra supercritical power plant boilers by pre-oxidation treatment[J].Corrosion Science,2017,114:1.
27 张筑耀.超(超)临界机组用T/P92钢焊缝金属的高温性能及对其蠕变数据的分析[J].金属加工:热加工,2008(12):31.
28 Yang Nansen, Wei Yuhuan, Fu Hongzhen, et al. Study on the alloying practice in a solid-solution strengthened superalloy for use at 1 000 ℃[J].Iron and Steel,1984,19(11):28(in Chinese).
杨枬森,魏育环,傅宏镇,等.1 000 ℃固溶强化型高温合金的合金化研究[J].钢铁,1984,19(11):28.
29 Liu Z, Bao H, Chen Z, et al. Creep strength and oxidation resistance of industrially made G115 steel pipe[M]∥Energy Materials 2017. Springer International Publishing,2017:153.
30 Yan P, Liu Z, Weng Y. Effect of preferential heat treatment on microstructure of new martensitic heat resistant steel G115[M]∥Energy Materials 2014. Springer, Cham,2014:137.
[1] 李今朝, 陈亮, 黄腾飞, 匡艳军, 邱振生. 关于反应堆压力容器新型用钢SA-508Gr.4N的研究进展[J]. 材料导报, 2019, 33(z1): 382-385.
[2] 樊江磊, 刘占云, 李育文, 吴深, 王霄, 刘建秀. Sn-Cu系无铅钎料微合金化研究进展[J]. 材料导报, 2018, 32(21): 3774-3779.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed