Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3774-3779    https://doi.org/10.11896/j.issn.1005-023X.2018.21.014
  金属与金属基复合材料 |
Sn-Cu系无铅钎料微合金化研究进展
樊江磊1, 2, 刘占云1, 李育文1, 吴深1, 王霄3, 刘建秀1
1 郑州轻工业学院机电工程学院,郑州 450002;
2 郑州轻工业学院河南省机械装备智能制造重点实验室,郑州 450002;
3 郑州轻工业学院能源与动力工程学院,郑州 450002
Research Progress of Micro-Alloying Sn-Cu Based Lead-Free Solders
FAN Jianglei1, 2, LIU Zhanyun1, LI Yuwen1, WU Shen1, WANG Xiao3, LIU Jianxiu1
1 Institute of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002;
2 Henan Key Laboratory of Mechanical Equipment Intelligent Manufacturing, Zhengzhou University of Light Industry, Zhengzhou 450002;
3 School of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002
下载:  全 文 ( PDF ) ( 1972KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电子产品绿色化的需求促进了电子组装中钎料合金的无铅化发展。目前,Sn-Cu系钎料以优良的综合性能和较低的成本成为最具使用前景的无铅钎料之一。但是Sn-Cu系钎料的熔点较高,在Cu基上的铺展性和钎焊性也较Sn-Pb钎料差,这在很大程度上限制了其应用。通过添加多种合金元素可改善Sn-Cu合金的微观组织和焊接性能。本文首先系统地综述了合金元素对Sn-Cu系无铅钎料微观组织、润湿性、力学性能等的影响,然后指出Sn-Cu系无铅钎料存在的问题。最后,对Sn-Cu系无铅钎料的发展方向和前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊江磊
刘占云
李育文
吴深
王霄
刘建秀
关键词:  Sn-Cu合金  无铅钎料  微合金化  力学性能  焊接性能    
Abstract: The environmental protection need of electronic products has promoted the development of lead-free solder alloys in the field of electronic assembly. At present, Sn-Cu based solder is one of the most promising lead-free solders with excellent performa-nces and lower cost. However, the higher melting point, poorer spreading and soldering properties of Sn-Cu based solder on Cu substrate compared with the Sn-Pb solder limit its extensive application. The microstructure and welding performance of Sn-Cu alloy can be improved by adding various alloying elements. Therefore, in this paper, the effects of micro-alloying on the microstructure, wettability and mechanical properties of Sn-Cu based lead-free solders are systematically reviewed. Then,the problems of the alloying for Sn-Cu based solder are pointed out. The development direction and foreground of Sn-Cu based lead-free solders are also discussed.
Key words:  Sn-Cu alloy    lead-free solders    micro-alloying    mechanical property    soldering properties
                    发布日期:  2018-11-21
ZTFLH:  TG425  
基金资助: 国家自然科学基金(51501167); 河南省科技开放合作项目(162106000019)
作者简介:  樊江磊:男,1983年生,副教授,研究方向为金属材料成形与凝固技术 E-mail:JLFan2011@163.com
引用本文:    
樊江磊, 刘占云, 李育文, 吴深, 王霄, 刘建秀. Sn-Cu系无铅钎料微合金化研究进展[J]. 材料导报, 2018, 32(21): 3774-3779.
FAN Jianglei, LIU Zhanyun, LI Yuwen, WU Shen, WANG Xiao, LIU Jianxiu. Research Progress of Micro-Alloying Sn-Cu Based Lead-Free Solders. Materials Reports, 2018, 32(21): 3774-3779.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.014  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3774
1 Abtew M, Selvaduray G.Lead-free solders in Microelectronics[J].Materials Science and Engineering R,2000,27(5):95.
2 张启运,庄鸿寿.钎焊手册-第2版[M].北京:机械工业出版社,2008.
3 Zeng G, Xue S, Zhang L, et al.Recent advances on Sn-Cu solders with alloying elements: Review[J].Journal of Materials Science Materials in Electronics,2012,43(12):565.
4 Chawla N.Thermomechanical behaviour of environmentally benign Pb-free solders[J].Metallurgical Reviews,2013,54(6):368.
5 Lee J, Chu K, Patzelt R, et al.Effects of Co addition in eutectic Sn-3.5Ag solder on shear strength and microstructural development[J].Microelectronic Engineering,2008,85(7):1577.
6 Chinnam R, Fauteux C, Neuenschwander J, et al.Evolution of the microstructure of Sn-Ag-Cu solder joints exposed to ultrasonic waves during solidification[J].Acta Materialia,2011,59(4):1474.
7 Kerr M, Chawla N.Creep deformation behavior of Sn-3.5Ag solder at small length scales[J].JOM,2004,56(6):50.
8 Zhang L, Xue S, Gao L, et al.Determination of Anand parameters for SnAgCuCe solder[J].Modelling and Simulation in Materials Science and Engineering,2009,17(7):075014.
9 Wu C, Yu D, Law C, et al.Properties of lead-free solder alloys with rare earth element additions[J].Materials Science and Engineering R Reports,2004,44(1):1.
10 Zhu F, Zhang H, Guan R, et al.Effects of temperature and strain rate on mechanical property of Sn96.5Ag3Cu0.5[J].Journal of Alloys and Compounds,2007,438(1):100.
11 Satyanarayan, Prabhu K N. Reactive wetting, evolution of interfacial and bulk IMCs and their effect on mechanical properties of eutectic Sn-Cu solder alloy[J].Advances in Colloid and Interface Science,2011,166(1-2):87.
12 Nogita K, Read J, Nishimura T, et al.Microstructure control in Sn-0.7 mass% Cu alloys[J].Materials Transactions,2005,46(11):2419.
13 Min W J, Xuan T P, Research progress and development tendency of Tin-based lead-free electronic solder[J].Metallic Functional Materials,2009,16(2):55(in Chinese).
闵文锦,宣天鹏.锡基无铅电子钎料的研究进展与发展趋势[J].金属功能材料,2009,16(2):55.
14 Wang F, Gao F, Ma X, et al.Depressing effect of 0.2wt.%Zn addition into Sn-3.0Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging[J].Journal of Electronic Materials,2006,35(10):1818.
15 Yang M, Cao Y, Joo S, et al.Cu6Sn5 precipitation during Sn-based solder/Cu joint solidification and its effects on the growth of interfacial intermetallic compounds[J].Journal of Alloys and Compounds,2014,582(2):688.
16 Mu D, Mcdonald S, Read J, et al.Critical Properties of Cu6Sn5 in electronic devices: Recent progress and a review[J].Current Opinion in Solid State and Materials Science,2015,47(19):55.
17 Tu P, Chan Y, Hung K, et al.Comparative study of micro-BGA reliability under bending stress[J].IEEE Transactions on Advanced Packaging,2000,23(4):750.
18 Gao Y J.Shear properties of Sn-Cu based bulk solders and joints [D]. Dalian: Dalian University of Technology,2010(in Chinese).
高艳俊. Sn-Cu基无铅钎料及其钎焊接头的剪切性能[D].大连:大连理工大学,2010.
19 Laurila T, Vuorinen V, Paulasto-Kröckel M.Impurity and alloying effects on interfacial reaction layers in Pb-free soldering[J].Materials Science and Engineering R,2010,68(1):1.
20 Laurila T, Vuorinen V, Kivilahti J K.Interfacial reactions between lead-free solders and common base materials[J].Materials Science and Engineering R Reports,2006,37(30):1.
21 Yan Y F, Xu J, Guo X X, et al.The influence of stress on creep behavior of Ag particle enhancement SnCu based composite solder[J] Journal of Materials Research,2009,23(1):69(in Chinese).
闫焉服,徐健,郭晓晓,等.应力对Ag颗粒增强SnCu基复合钎料蠕变性能的影响[J].材料研究学报,2009,23(1):69.
22 Seokhwan H, Keunsoo K.Effect of Ag addition on the microstructural and mechanical properties of Sn-Cu eutectic solder[J].Materials Transactions,2001,42(5):739.
23 Tai F, Guo F, Xia Z, et al.Processing and creep properties of Sn-Cu composite solders with small amounts of nanosized Ag reinforcement additions[J].Journal of Electronic Materials,2005,34(11):1357.
24 Rizvi M, Bailey C, Chan Y, et al.Effect of adding 0.3wt% Ni into the Sn-0.7wt% Cu solder part Ⅱ. growth of intermetallic layer with Cu during wetting and aging[J].Journal of Alloys and Compounds,2007,438(1-2):122.
25 Ventura T, Terzi S, Rappaz M, et al.Effects of Ni additions, trace elements and solidification kinetics on microstructure formation in Sn-0.7Cu solder[J].Acta Materialia,2011,59(10):4197.
26 Nishimura T. Lead-free solder alloy: US, 6180055[P].2001-11-20.
27 Li J X.The research of Sn-Zn system without Ag lead-free solder[D]. Zhenjiang: Jiangsu University,2009(in Chinese).
李建新. 新型Sn-Cu系无银无铅钎料的研究[D].镇江:江苏大学,2009.
28 Xue S B, Zhao Z Q, Qian Y Y, et al.A study on over-potential of some lead-free solders[J].Acta Metal Sinica,1999,20(3):175(in Chinese).
薛松柏,赵振清,钱乙余,等.无铅钎料的超电势问题研究[J].焊接学报,1999,20(3):175.
29 Chuang T, Jain C, Wu H M.Intermetallic reactions in Sn-0.4Co-0.7Cu solder BGA packages with an ENIG surface finish[J].Journal of Electronic Materials,2008,37(11):1734.
30 Cheng F, Nishikawa H, Takemoto T. Effects of isothermal aging on the microstructure and tensile behavior of Sn-3.0Ag-0.5Cu-0.2Co solder[J].Materials Science Forum,2008,580-582:239.
31 Liu L, Andersson C, Liu J.Thermodynamic assessment of the Sn-Co lead-free solder system[J].Journal of Electronic Materials,2004,33(9):935.
32 Du C, Wang X, Tian S.Effect of bonding time on the microstructure and mechanical properties of Co/Sn/Cu joint[J].Journal of Materials Science Materials in Electronics,2017,29(1):1.
33 Zou C, Gao Y, Yang B, et al.Melting temperature depression of Sn-0.4Co-0.7Cu lead-free solder nanoparticles[J].Soldering and Surface Mount Technology,2013,21(2):9.
34 Chen Y, Hsu C, Chen S, et al.Phase equilibria of Sn-Co-Cu ternary system[J].Metallurgical & Materials Transactions A,2012,43(10):3586.
35 Zou Q B.The influences of minor elements on Sn-0.7Cu lead-free solder[D].Tianjin:Tianjin University,2009(in Chinese).
邹庆彬. 微量添加元素对Sn-0.7Cu无铅钎料性能的影响[D].天津:天津大学,2009.
36 Andersson C, Sun P, Liu J.Tensile properties and microstructural characterization of Sn-0.7Cu-0.4Co bulk solder alloy for electronics applications[J].Journal of Alloys and Compounds,2008,457(1):97.
37 Cho M, Kang S, Shih D, et al.Effects of minor additions of Zn on interfacial reactions of Sn-Ag-Cu and Sn-Cu solders with various Cu substrates during thermal aging[J].Journal of Electronic Materials,2007,36(11):1501.
38 Wang F, Ma X, Qian Y.Improvement of microstructure and interface structure of eutectic Sn-0.7Cu solder with small amount of Zn addition[J].Scripta Materialia,2005,53(6):699.
39 Kotadia H, Howes P, Mannan S.A review: On the development of low melting temperature Pb-free solders[J].Microelectronics Reliability,2014,54(6-7):1253.
40 Wu C, Yu D, Law C, et al.Microstructure and mechanical properties of new lead-free Sn-Cu-RE solder alloys[J].Journal of Electronic Materials,2002,31(9):928.
41 Lu B, Wang J H, Li H, et al.Effect of cerium on microstructure and properties of Sn-0.7Cu-0.5Ni lead-free solder alloy[J].Journal of the Chinese Rare Earth Society,2007(2):217(in Chinese).
卢斌,王娟辉,栗慧,等.微量铈对Sn-0.7Cu-0.5Ni钎料合金组织与性能的影响[J].中国稀土学报,2007(2):217.
42 Xian A, Gong G.Oxidation behavior of molten tin doped with phosphorus[J].Journal of Electronic Materials,2007,36(12):1669.
43 Huang H, Wei X, Tan D, et al.Effects of phosphorus addition on the properties of Sn-9Zn lead-free solder alloy[J].Metallurgy and Materials,2013,20(6):563.
44 Wang J, The mechanism study of Sn-0.7Cu lead-free solders properties modified by Ni,Ge microelements[J].Printed Circuit Information,2009(S1):324(in Chinese).
王瑾. 微量Ni,Ge元素改善Sn-0.7Cu无铅合金钎料性能的机理研究[J].印制电路信息,2009(S1):324.
45 Seokhwan H, Keunsoo K.Effect of Au addition on the microstructural and mechanical properties of Sn-Cu eutectic solder[J].Materials Transactions,2002,43(2):239.
46 Yan Z, Xian A P.Pitting corrosion behavior of Sn-0.7Cu lead-free alloy in simulated marine atmospheric environment and the effect of trace Ga[J].Acta Metal Sinica,2011,47(10):1327(in Chinese).
颜忠,冼爱平.人工模拟海洋大气环境下Sn-0.7Cu无铅钎料的点蚀行为及微量Ga的影响[J].金属学报,2011,47(10):1327.
47 Yang L, Zhang Y, Dai J, et al.Microstructure, interfacial IMC and mechanical properties of Sn-0.7Cu-xAl(x=0-0.075) lead-free sol-der alloy[J].Materials and Design,2015,67:209.
48 Koo J, Lee C, Hong S, et al.Microstructural discovery of Al addition on Sn-0.5Cu-based Pb-free solder design[J].Journal of Alloys and Compounds,2015,650:106.
49 Yang L, Zhang Y, Du C, et al.Effect of aluminum concentration on the microstructure and mechanical properties of Sn-Cu-Al solder alloy[J].Microelectronics Reliability,2015,55(3-4):596.
50 Huang H, Shuai G, Wei X, et al.Effects of sulfur addition on the wettability and corrosion resistance of Sn-0.7Cu lead-free solder[J].Microelectronics Reliability,2017,74:15.
51 Nogita K.Stabilization of CuSn by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys[J].Intermetallics,2010,18(1):145.
52 Dudek M, Sidhu R, Chawla N.Novel rare-earth-containing lead-free solders with enhanced ductility[J].JOM,2006,58(6):57.
53 Yang S, Ho C, Chang C, et al.Massive spalling of intermetallic compounds in solder-substrate reactions due to limited supply of the active element[J].Journal of Applied Physics,2007,101(8):1.
54 Chen W, Yang S, Tsai M, et al.Uncovering the driving force for massive spalling in the Sn-Cu/Ni system[J].Scripta Materialia,2010,63(1):47.
55 Zeng G, Mcdonald S, Gu Q, et al.The influence of Ni and Zn additions on microstructure and phase transformations in Sn-0.7Cu/Cu solder joints[J].Acta Materialia,2015,83:357.
56 Huang H Z, Lu D, Zhao J W, et al.Effect of Bi and P addition on the properties of Sn-0.7Cu lead-free solder alloy[J].Materials Review B: Research Papers,2016,30(14):104(in Chinese).
黄惠珍,卢德,赵骏韦,等.添加Bi和P对Sn-0.7Cu无铅钎料合金性能的影响[J].材料导报:研究篇,2016,30(14):104.
57 Li L, Cheng Y, Xu G, et al.Effects of indium addition on properties and wettability of Sn-0.7Cu-0.2Ni lead-free solders[J].Materials and Design,2014,64(9):15.
58 Liu W S, Deng T, Ma Y Z, et al.Effects of rare earths on properties of lead-free solder alloys[J].Journal of Materials Science and Engineering,2011,29(5):800(in Chinese).
刘文胜,邓涛,马运柱,等.稀土元素对无铅钎料性能的影响[J].材料科学与工程学报,2011,29(5):800.
59 Wang H, Fang J, Xu Z, et al.Improvement of Ga and Zn alloyed Sn-0.7Cu solder alloys and joints[J].Journal of Materials Science Materials in Electronics,2015,26(6):3589.
60 El-Daly A A, Hammad A E. Enhancement of creep resistance and thermal behavior of eutectic Sn-Cu lead-free solder alloy by Ag and In-additions[J].Materials and Design,2012,40:292.
61 Shen J, Pu Y, Wu D, et al.Effects of minor Bi, Ni on the wetting properties, microstructures, and shear properties of Sn-0.7Cu lead-free solder joints[J].Journal of Materials Science Materials in Electronics,2014,26(3):1.
62 Hu X, Li Y, Liu Y, et al.Developments of high strength Bi-containing Sn0.7Cu lead-free solder alloys prepared by directional solidification[J].Journal of Alloys and Compounds,2015,625:241.
63 Maeshima T, Ikehata H, Terui K, et al.Effect of Ni to the Cu substrate on the interfacial reaction with Sn-Cu solder[J].Materials and Design,2016,103:106.
64 Adli N, Razak N, Saud N.Enhancement on wettability and intermetallic compound formation with an addition of Al on Sn-0.7Cu lead-free solder fabricated via powder metallurgy method[C]∥International Conference on Functional Materials and Metallurgy. AIP Publishing LLC,2016,1756(1):95.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 李今朝, 陈亮, 黄腾飞, 匡艳军, 邱振生. 关于反应堆压力容器新型用钢SA-508Gr.4N的研究进展[J]. 材料导报, 2019, 33(z1): 382-385.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed