Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11154-11162    https://doi.org/10.11896/cldb.19120106
  金属与金属基复合材料 |
高氮奥氏体钢的塑性加工变形特性研究进展
张荣华*, 杨川, 石宁, 关远远, 马劲红, 张源, 陈连生
华北理工大学冶金与能源学院,现代冶金技术教育部重点实验室,唐山 063210
Research Progress in Plastic Deformation Characteristics of High Nitrogen Austenitic Steel
ZHANG Ronghua*, YANG Chuan, SHI Ning, GUAN Yuanyuan, MA Jinhong, ZHANG Yuan, CHEN Liansheng
Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China
下载:  全 文 ( PDF ) ( 16723KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在钢铁材料中加入一定量的氮元素所制备的高氮钢往往具有优异的力学性能和化学性能。自从氮元素被视为有益元素大量加入钢铁材料中以来,人们对高氮钢的研究主要集中在以下几点:(1)氮元素可以有效替代镍元素来扩大奥氏体相区,提高钢中奥氏体的稳定性;(2)提高材料的可加工性/成形性,使强塑性协调;(3)第二相析出对材料的强化以及失稳的影响,高氮马氏体钢沉淀硬化等。
高氮奥氏体钢优良的综合性能在很大程度上取决于氮元素以固溶态存在于奥氏体FCC结构的八面体间隙中,但是高氮钢在热处理过程中,氮、碳元素往往会和材料中的其他合金元素形成第二相析出物,而多数析出产物对高氮钢的热加工性能有着较大的负面影响。为此,人们探索了大量工艺手段并加以改善,涉及第二相析出的探究、热变形模拟实验以及实验室热轧工艺探究,取得了丰硕成果。
氮在钢中短程有序排布和降低层错能的特点,使高氮奥氏体钢具有较高的加工硬化指数。同时,高氮奥氏体钢具有常规奥氏体钢不常见的韧脆转变行为,韧脆转变温度随氮含量的增加而升高,极易导致高氮奥氏体钢在冷加工时处于脆性区域。针对这一问题,研究者提出了各种解决办法以及相应的理论解释,但各种说法各具特色,争议较大,有待进一步研究。
本文归纳了高氮奥氏体钢的塑性加工变形特性,分别介绍了高氮钢的定义、氮元素在钢中的作用以及第二相析出对高氮奥氏体钢热变形的影响,并综述了相关热加工变形研究进展,分析了高氮奥氏体钢冷变形所面临的问题及改善方式,以期为后续的高氮奥氏体钢塑性加工研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张荣华
杨川
石宁
关远远
马劲红
张源
陈连生
关键词:  高氮奥氏体钢  第二相析出  热变形  冷变形    
Abstract: High nitrogen steel, which is made by adding a certain amount of nitrogen element into steel materials, often has excellent mechanical and chemical properties. Since nitrogen is regarded as a beneficial element added to iron and steel materials, the research on high nitrogen steel mainly focuses on the following points: (1) nitrogen element can effectively replace nickel to enlarge austenite phase zone and improve austenite stability of steel; (2) improve machinability/formability of material to coordinate strong plasticity; (3) the effect of second phase precipitation on material strengthening and instability, precipitation hardening of high nitrogen martensitic steel, etc.
The excellent comprehensive performance of high nitrogen austenitic steel depends to a large extent on the nitrogen element in the solid solution state in the octahedral gap of the austenite FCC structure. Forming second phase precipitates with other alloying elements in the material, most of the precipitated products have a negative impact on the hot workability of high nitrogen steels. To this end, people have explored a large number of process methods to improve, involving the exploration of second phase precipitation, thermal deformation simulation experiments and laboratory hot rolling process exploration, and achieved fruitful results.
The short-range and orderly arrangement of nitrogen in steel and the reduction of stacking fault energy make high nitrogen austenitic steels have a higher work hardening index. At the same time, high-nitrogen austenitic steels have a tough-brittle transition behavior that is not common in conventional austenitic steels. The ductile-brittle transition temperature increases with the increase of nitrogen content, which easily causes high-nitrogen austenitic steels to be in the brittle zone during cold working. In response to this problem, the researchers have proposed various solutions and corresponding theoretical explanations, but the various claims have their own characteristics and are controversial, and need to be further studied in the future.
This paper summarizes the plastic deformation characteristics of high nitrogen austenitic steel. The definition of high-nitrogen steel, the role of nitrogen in steel and the effect of second phase precipitation on the thermal deformation of high-nitrogen austenitic steel are introduced. The research progress of related hot working deformation is reviewed, and the problems faced by cold deformation of high nitrogen austenitic steel and the improvement methods are analyzed. It is expected to provide a reference for the subsequent plastic processing research of high nitrogen austenitic steel.
Key words:  high nitrogen austenitic steel    precipitation of second phase    thermal deformation    cold deformation
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TG142  
基金资助: 河北省钢铁联合研究基金(E2018209280); 唐山市科学技术研究与发展计划(20130205b).
作者简介:  张荣华,博士,副教授,硕士研究生导师,从事金属材料加工及组织性能强韧化领域的教学和科研工作。近年来,主持完成市厅级项目1项,校级项目2项;参与国家级项目1项,省级项目2项,现主持河北省钢铁联合基金项目1项;先后发表论文30余篇,其中被SCI收录2篇,被EI收录14篇;出版著作5部。
引用本文:    
张荣华, 杨川, 石宁, 关远远, 马劲红, 张源, 陈连生. 高氮奥氏体钢的塑性加工变形特性研究进展[J]. 材料导报, 2021, 35(11): 11154-11162.
ZHANG Ronghua, YANG Chuan, SHI Ning, GUAN Yuanyuan, MA Jinhong, ZHANG Yuan, CHEN Liansheng. Research Progress in Plastic Deformation Characteristics of High Nitrogen Austenitic Steel. Materials Reports, 2021, 35(11): 11154-11162.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120106  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11154
1 Rashev T V, Eliseev A V, Zhekova L T, et al. Steel in Translation,2019,49(7),433.
2 Shanina B D, Gavriljuk V G, Berns H. Materials Science Forum,2007,539?543,4993.
3 Zhang X Y, Zheng B J, Guo B, et al. Materials Reports B: Research Papers,2016,30(9),155(in Chinese).
张旭昀,郑冰洁,郭斌,等.材料导报:研究篇,2016,30(9),155.
4 Lang Y P, Qu H P, Chen H T, et al. Journal of Iron and Steel Research(International),2015,22(2),91.
5 Li G Q, Dong T L. China Metallurgy,2007,17(7),5(in Chinese).
李光强,董廷亮.中国冶金,2007,17(7),5.
6 Dai Q X. Iron and Steel,1995,30(8),52(in Chinese).
戴起勋.钢铁,1995,30(8),52.
7 Katada Y, Sagara M, Kobayashi Y, et al. Materials and Manufacturing Processes,2004,19(1),19.
8 Li M, Wu H, Wang Y, et al. Materials Science and Engineering C,2017,73,198.
9 Becerikli M, Jaurich H, Wallner C, et al. PloS one,2019,14(3),e0214384.
10 Zhang R H. As?cast microstructure and hot deformation behaviors of modified ultra high nitrogen austenitic steel for retaining rings. Ph.D. Thesis. Yanshan University, China,2015(in Chinese).
张荣华.护环用改进型超高氮奥氏体钢的铸态组织及热变形行为.博士学位论文,燕山大学,2015.
11 Small M, Ryba E. Metallurgical and Materials Transactions A,1981,12(8),1389.
12 Ha H Y, Kwon H S. Electrochimica Acta,2007,52(5),2175.
13 Qin F M, Li Y J, He W W, et al. Metals and Materials International,2017,23(6),1087.
14 Astafurova E G, Moskvina V A, Panchenko M Y, et al. Metals,2020,10(1),27.
15 Blinov V M. Russian Metallurgy,2007,2007(2),127.
16 Bannykh I O, Bocharova I O, Zvereva T N, et al. Russian Metallurgy (Metally),2011,2011(9),826.
17 Yoshida M, Takasugi T. Materials Science and Engineering A,2003,345(1?2),350.
18 Xie H L, Yang K, Li F, et al. Journal of Manufacturing Processes,2020,52,132.
19 Knutsen R D, Lang C I, Basson J A. Acta Materialia,2004,52(8),2407.
20 Kartik B, Veerababu R, Sundararaman M, et al. Materials Science and Engineering A,2015,642(26),288.
21 Simmons J W. Metallurgical and Materials Transactions A,1995,26(10),2579.
22 Astafurova E G, Moskvina V A, Maier G, et al. Procedia Structural Integrity,2018,13,1129.
23 Fu X Y, Bai P C, Yang J C. Metals,2018,8(10),816.
24 Erisir E, Prahl U, Bleck W. Materials Science and Engineering A,2010,528(1),519.
25 Wang Z H. Materials Reports,2012,26(12),5(in Chinese).
王振华.材料导报,2012,26(12),5.
26 Wang Z H, Wang Y, Wang C M, et al. Materials,2018,11(6),1026.
27 Zhao F, Wu M, Jiang B, et al. Materials Science and Engineering A,2018,731(25),360.
28 Lang Y P, Zhou Y, Rong F, et al. Journal of Iron and Steel Research (Internmional),2010,17(10),45.
29 Lu Y H, Fu R D, Qiu L, et al. Transactions of Materials and Heat Treatment,2007,28(2),69(in Chinese).
逯允海,付瑞东,邱亮,等.材料热处理学报,2007,28(2),69.
30 Zhao B C, Zhao T, Li G Y, et al. Archives of Metallurgy and Materials,2018,63(1),379.
31 Hu G D, Wang P, Li D Z, et al. Materials Science and Engineering A,2019,752(3),93.
32 Sobrinho J H O S, Filgueiras R S, Santos S E, et al. ISIJ International,2015,55(3),670.
33 Zhang Y F, Zhao Y L, Chang J B, et al. Shanghai Metals,2018,40(6),19(in Chinese).
张雲飞,赵英利,常金宝,等.上海金属,2018,40(6),19.
34 Zhang J, Li J Y, Wang Y D, et al. Forging and Stamping Technology,2009,34(1),10(in Chinese).
张进,李静媛,王一德,等.锻压技术,2009,34(1),10.
35 Wei X P, He W W, Liu J S. Journal of Taiyuan University of Science and Technology,2010,31(4),296(in Chinese).
魏新鹏,何文武,刘建生.太原科技大学学报,2010,31(4),296.
36 Zhou Y, Lang Y P, Rong F, et al. Special Steel,2008,29(1),22(in Chinese).
周勇,郎宇平,荣凡,等.特殊钢,2008,29(1),22.
37 Wang S T, Wang W, Shan Y Y, et al. World Iron and Steel,2009,9(1),46(in Chinese).
王松涛,王威,单以银,等.世界钢铁,2009,9(1),46.
38 Hong C M, Shi J, Sheng L Y, et al. Materials and Design,2011,32(7),3711.
39 赵英利.“第十届中国钢铁年会”暨“第六届宝钢学术年会”.上海,2015,pp.1.
40 Wang L J, Sheng L Y, Hong C M. Materials and Design,2012,37,349.
41 Singh B B, Kumar K S, Madhu V, et al. Procedia Engineering,2017,173,926.
42 Singh B B, Sukumar G, Rao P P, et al. Materials Science and Enginee?ring A,2019,751(28),115.
43 Salova Y S, Litovchenko I Y, Akkuzin S A, et al. In: Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2019. Tomsk,2019,pp.020305.
44 Wu X, Xu S, Huang J, et al. Materials and Corrosion.2015,59(8),676.
45 B Raj. High nitrogen steels and stainless steels: manufacturing, properties, and applications. Alpha Science, UK,2004.
46 Wang S T, Yang K, Shan Y Y, et al. Acta Metallurgica Sinica,2007,43(7),713(in Chinese).
王松涛,杨柯,单以银,等.金属学报,2007,43(7),713.
47 Saller G, Spiradek?Hahn K, Scheu C, et al. Materials Science and Engineering A,2006,427(1?2),246.
48 Ojima M, Adachi Y, Tomota Y, et al. Materials Science and Engineering A,2009,527(1?2),16.
49 Clausen B, Lorentzen T, Leffers T. Acta Materialia,1998,46(9),3087.
50 Yuan Z Z, Dai Q X, Cheng X N, et al. Materials Characterization,2006,56(1),79.
51 Lee T H, Oh C S, Kim S J. Scripta Materialia,2008,58(2),110.
52 Shin J H, Lee J W. Materials Characterization,2014,91,19.
53 Fu R D, Qiu L, Wang C Y, et al. Chinese Journal of Materials Research,2005,19(2),193(in Chinese).
付瑞东,邱亮,王存宇,等.材料研究学报,2005,19(2),193.
54 Liu S C, Liu D Y, Dai Y K. Acta Metallurgica Sinica,2002,38(10),1042(in Chinese).
刘世程,刘德义,戴雅康.金属学报,2002,38(10),1042.
55 Yuan Z Z, Dai Q X, Cheng X N, et al. Journal of Jiangsu University(Natural Science Edition),2004,25(3),247(in Chinese).
袁志钟,戴起勋,程晓农,等.江苏大学学报(自然科学版),2004,25(3),247.
56 Uggowitzer P J, Magdowski R, Speidel M O, et al. ISIJ International,1996,36(7),901.
57 Ma Y X. Research on Iron and Steel,2011,39(2),11(in Chinese).
马玉喜.钢铁研究,2011,39(2),11.
58 Milititsky M, Matlock D K, Regully A, et al. Materials Science and Engineering A,2008,496(1?2),189.
59 Tanaka M, Onomoto T, Tsuchiyama T, et al. ISIJ International,2012,52(5),915.
60 Mohammadzadeh R, Akbari A, Mohammadzadeh M. Metallurgical and Materials Transactions A,2016,47(12),6032.
61 Astafurova E G, Moskvina V A, Maier G, et al. Materials Science Forum,2019,4559(1882),27.
62 Astafurova E G, Moskvina V A, Maier G, et al. Materials Science and Engineering A,2019,745(4),265.
63 Maier G, Astafurova E G, Moskvina V A, et al. Procedia Structural Integrity 2018,13,1053.
64 Astafurova E G, Moskvina V A, Galchenko N K, et al. Letters on Mate?rials,2018,8(1),71.
65 Hamada A S, Karjalainen L P, Misra R D K, et al. Materials Science and Engineering A,2013,559,336.
66 Zhang W, Hu J. Materials Characterization,2013,79(3),37.
67 Mola J, Wendler M, Weis A, et al. Metallurgical and Materials Transactions A,2015,46(4),1450.
[1] 尹畅畅, 余登德, 陈家林, 闻明, 管伟明, 谭志龙. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126.
[2] 韩丽青, 吴云胜, 刘状, 秦学智, 王常帅, 周兰章, 于宏, 陈亚军. 一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为[J]. 材料导报, 2020, 34(6): 6109-6113.
[3] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[4] 黄建武, 易幼平, 黄始全, 郭万富. 深冷变形对2219铝合金环件晶粒组织及性能的影响[J]. 材料导报, 2020, 34(14): 14129-14133.
[5] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[6] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[7] 王磊, 易幼平, 黄始全, 董非. 固溶前深冷变形处理对7050铝合金组织和性能的影响[J]. 材料导报, 2019, 33(20): 3467-3471.
[8] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[9] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[10] 戴青松, 欧世声, 邓运来, 付平, 张佳琪. 5083铝合金的热变形组织演变及晶粒度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 143-146.
[11] 丁雨田,高钰璧,豆正义,高鑫,贾智. GH3625合金管材冷变形行为及热处理工艺研究*[J]. 材料导报编辑部, 2017, 31(10): 70-76.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed