Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10120-10126    https://doi.org/10.11896/cldb.20030090
  金属与金属基复合材料 |
NiPt15合金热变形行为及微观组织演变规律
尹畅畅1, 余登德2, 陈家林1, 闻明1, 管伟明1, 谭志龙1
1 昆明贵金属研究所稀贵金属综合利用新技术国家重点实验室,昆明 650106
2 昆明理工大学材料科学与工程学院,昆明 650093
Hot Deformation Behavior and Microstructure Evolution of NiPt15 Alloy
YIN Changchang1, YU Dengde2, CHEN Jialin1, WEN Ming1, GUAN Weiming1, TAN Zhilong1
1 State Key Laboratory of New Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China
2 School of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093, China
下载:  全 文 ( PDF ) ( 6920KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究采用Gleeble-3500热模拟机对NiPt15合金高温热变形过程进行研究,设定NiPt15合金变形温度为950~1 150 ℃,变形速率为0.01~3 s-1。通过分析热变形过程中NiPt15合金在不同条件下的真应力-应变曲线,建立了双曲正弦型Arrhenius本构关系模型,并拟合模型各参数对合金变形量的依赖性。通过对热变形组织及显微硬度的表征,研究试样各区域热变形组织的差异,分析温度、变形速率、lnZ对动态再结晶及材料维氏硬度的影响。结果表明:NiPt15合金真应力-应变曲线包括三种不同变化趋势,各变形速率下对应的趋势变化临界温度值不同;应变激活能不大于476.85 kJ/mol;升高温度并且降低变形速率能提高再结晶比例至完全动态再结晶,形核机制为非连续性动态再结晶,主要以晶界弓出和反复生成孪晶为再结晶晶粒提供形核位置;当lnZ小于38.89时,晶粒尺寸与lnZ呈负相关性,当lnZ大于38.89时,晶粒尺寸与lnZ关系不明显;硬度与lnZ在本次实验条件下呈正相关性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹畅畅
余登德
陈家林
闻明
管伟明
谭志龙
关键词:  NiPt15合金  热变形  动态再结晶  形核机制    
Abstract: In this paper, Gleeble-3500 thermal simulator is used to study the high-temperature thermal deformation process of NiPt15 alloy. The defor-mation temperature of NiPt15 alloy is set to 950—1 150 ℃ and the deformation rate is 0.01 — 3 s-1. A hyperbolic sinusoidal Arrhenius constitutive model is established, and the dependence of the parameters on the strain is fitted, by analyzing the true stress-strain curve under different conditions during thermal deformation. Through the characterization of hot deformed microstructure and microhardness, the difference of hot deformation microstructure in each region of the sample was studied, and the effects of temperature, deformation rate, lnZ on dynamic recrystallization and Vickers hardness were analyzed. The results show that the true stress-strain curve of NiPt15 alloy includes three different changing trends, and the corresponding critical temperature value of the trend change at each deformation rate is different; the strain activation energy is not more than 476.85 kJ/mol. Increasing the temperature and reducing the deformation rate can increase the recrystallization ratio to complete dynamic recrystallization. The nucleation mechanism of NiPt15 alloy is discontinuous dynamic recrystallization, which mainly uses grain boundary bowing and repeated twinning to provide nucleation for recrystallized grains position. When lnZ is less than 38.89, the grain size has a negative correlation with lnZ. When lnZ is greater than 38.89, the relationship between the grain size and lnZ is not obvious; the hardness and lnZ have a positive correlation under the experimental conditions.
Key words:  NiPt15 alloy    hot deformation behavior    dynamic recrystallization    nucleation mechanism
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TG146.3+3  
基金资助: 国家重点研发计划项目 (2017YFB0305503);云南省应用基础研究面上项目 (2016FB086),云南省创新团队项目 (2019HC024);云南省第十八批技术创新人才 (13020176);昆明市稀贵金属溅射靶材科技创新团队 (13020169);云南省科技厅科研院所技术开发研究专项 (2018DC004)
通讯作者:  tzl@ipm.com.cn   
作者简介:  尹畅畅,2015年毕业于西南交通大学,获得工学学士学位。现就读于昆明贵金属研究所,并在谭志龙老师的指导下进行研究。主要研究方向为贵金属热模拟。
谭志龙,昆明贵金属研究所高级工程师、硕士研究生导师。2007年7月本科毕业于南昌航空大学材料学院,2010年7月在昆明贵金属研究所材料学专业取得硕士学位,毕业后留所工作。2018年入选云南省第十八批技术创新人才培养对象。主要从事稀贵金属功能材料的研究工作。近年来,在稀贵金属合金材料领域发表学术论文20余篇,获授权发明专利8项。
引用本文:    
尹畅畅, 余登德, 陈家林, 闻明, 管伟明, 谭志龙. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126.
YIN Changchang, YU Dengde, CHEN Jialin, WEN Ming, GUAN Weiming, TAN Zhilong. Hot Deformation Behavior and Microstructure Evolution of NiPt15 Alloy. Materials Reports, 2021, 35(10): 10120-10126.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030090  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10120
1 Sarkar J.Sputtering Materials for VLSI and Thin Film Devices, William Andrew Publishing, New York, USA, 2014, pp. 501.
2 Utlu G, Artunς N.Microelectronic Engineering, 2014, 113, 86.
3 Sun Y, Wan Z P, Hu L X, et al.Materials Design, 2015, 86, 922.
4 Wan Z P, Sun Y, Hu L X, et al.Materials Design, 2017, 122, 11.
5 Yuan X Y, Chen L Q.Acta Metallurgica Sinica, 2015, 51(6), 651 (in Chinese).
袁晓云, 陈礼清.金属学报, 2015, 51(6), 651.
6 Chen D D, Lin Y C, Zhou Y, et al.Journal of Alloys and Compounds, 2017, 708, 938.
7 Lin C. High temperature deformation of 7075 aluminum alloy and its microstructure evolution. Master's Thesis, Harbin Institute of Technology, China, 2005(in Chinese).
林琛. 7075 铝合金高温变形形为及组织演化.硕士学位论文, 哈尔滨工业大学, 2005.
8 Tan Z L, Zhang J M, Wen M, et al.Precious Metals, 2015,36(S1), 49(in Chinese).
谭志龙, 张俊敏, 闻明, 等.贵金属, 2015,36(S1), 49.
9 Lai S Z. Hot deformation behavior of nickel during compression at eleva-ted temperature. Master's Thesis, Hunan University, China, 2014(in Chinese).
赖仕祯. 纯镍高温热压缩流变行为研究.硕士学位论文, 湖南大学, 2014.
10 Fu G S, Chen W Z, Qian K W.The Chinese Journal of Nonferrous Metals, 2002, 12(S), 140(in Chinese).
傅高升, 陈文哲, 钱匡武.中国有色金属学报, 2002, 12(S), 140.
11 Li H Z, Zhang X M, Chen M A, et al.The Chinese Journal of Nonferrous Metals, 2005, 15(4), 621(in Chinese).
李慧中, 张新明, 陈明安,等.中国有色金属学报, 2005, 15(4), 621.
12 Pan J S, Tian M B, Tong J M. Fundamentals of materials science, Tsinghua University Press, China, 2011(in Chinese).
潘金生, 田民波, 仝健民. 材料科学基础, 清华大学出版社, 2011.
13 Cao Y, Di H S, Zhang J C, et al.Acta Metallurgica Sinica, 2012, 48(10), 1175(in Chinese).
曹宇, 邸洪双, 张洁岑, 等.金属学报, 2012, 48(10), 1175.
14 Yin X Q, Park C H, Li Y F, et al.Journal of Alloys and Compounds, 2017, 693, 426.
15 Li B, Pan Q L, Yin Z M.Journal of Alloys and Compounds, 2014, 584, 406.
16 Verdier M, Groma I, Flandin L, et al.Scripta Materialia, 1997, 37(4), 449.
17 Tian B, Lind C, Schafler E, et al.Materials Science and Engineering: A, 2004, 367(1), 198.
18 Zhao M L, Sun W R, Yang S L, et al.Acta Metallurgica Sinica, 2009, 45(1), 79(in Chinese).
赵美兰, 孙文儒, 杨树撩, 等.金属学报, 2009, 45(1), 79.
19 Sun Y, Zeng W D, Han Y F, et al.Materials Science and Engineering: A, 2011, 528, 8757.
20 Sellars C M, Tegart W J M.Acta Metallurgica, 1996, 14(9), 1136.
21 Pu E X, Feng H, Liu M, et al.Journal of Iron and Steel Research International, 2016, 23, 178.
22 Niu J T.Physical simulation in materials and hot-working, National Defense Industry Press, China, 1999(in Chinese).
牛济泰.材料和热加工领域的物理模拟技术, 国防工业出版社, 1999.
23 Blum W, Zhu Q, Merkel R, et al.Materials Science and Engineering: A, 1996, 205(1), 23.
24 Wu Z G, Li D F, Guo S L, et al. Rare Metal Materials and Engineering, 2012,41(2), 235(in Chinese).
吾志岗, 李德富, 郭胜利, 等.稀有金属材料与工程, 2012,41(2), 235.
25 Sakai T.Journal of Materials Processing Technology, 1995, 53(1), 349.
26 He G A, Liu F, Huang L, et al.Materials Science and Engineering: A, 2016, 677, 496.
27 Dudova N, Belyakov A, Sakai T, et al.Acta Metallurgica, 2010, 58(10), 3624.
[1] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[2] 韩丽青, 吴云胜, 刘状, 秦学智, 王常帅, 周兰章, 于宏, 陈亚军. 一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为[J]. 材料导报, 2020, 34(6): 6109-6113.
[3] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[4] 王昕宇, 徐春, 黎雨, 庞灵欢, 王斌君, 陈建斌. 电脉冲拉伸下5052铝合金的变形行为及微观组织和织构演变[J]. 材料导报, 2020, 34(24): 24097-24103.
[5] 罗锐, 陈乐利, 曹赟, 周皓天, 崔树刚, 韩敏, 裴昌磊, 程晓农, 高佩. 铬钼高温铁素体钢的形变特性与动态再结晶模型[J]. 材料导报, 2020, 34(20): 20118-20122.
[6] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[7] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[8] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[9] 朱利敏, 李全安, 陈晓亚, 张清, 王颂博, 张帅. Mg-8Gd-0.5Zr合金热压缩过程中动态再结晶行为[J]. 材料导报, 2019, 33(24): 4117-4121.
[10] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[11] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[12] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[13] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[14] 张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件[J]. 材料导报, 2018, 32(22): 3900-3907.
[15] 祝佳林, 刘施峰, 柳亚辉, 姬静利, 李丽娟. 冷轧高纯钽板退火过程中微观组织及织构演变的梯度效应[J]. 材料导报, 2018, 32(20): 3595-3600.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed